

Zenith[®] Dissection Endovascular System Zenith[®] TX2[®] Dissection Endovascular Graft with Pro-Form[®] and

Zenith[®] Dissection Endovascular Stent

Instructions for Use

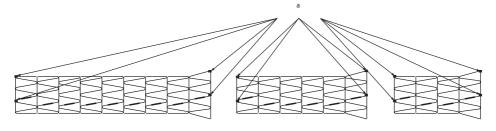
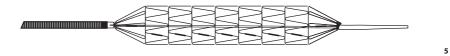
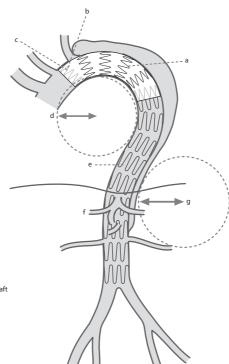


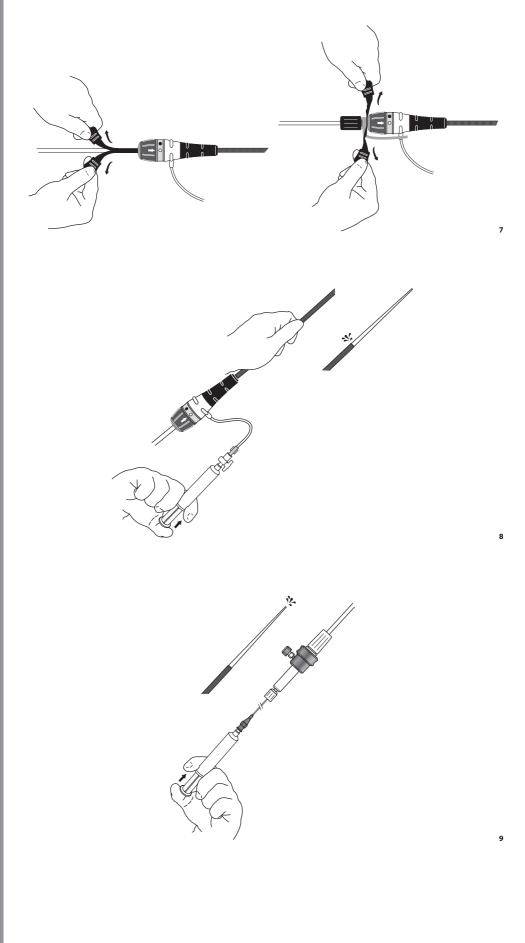
TABLE OF CONTENTS

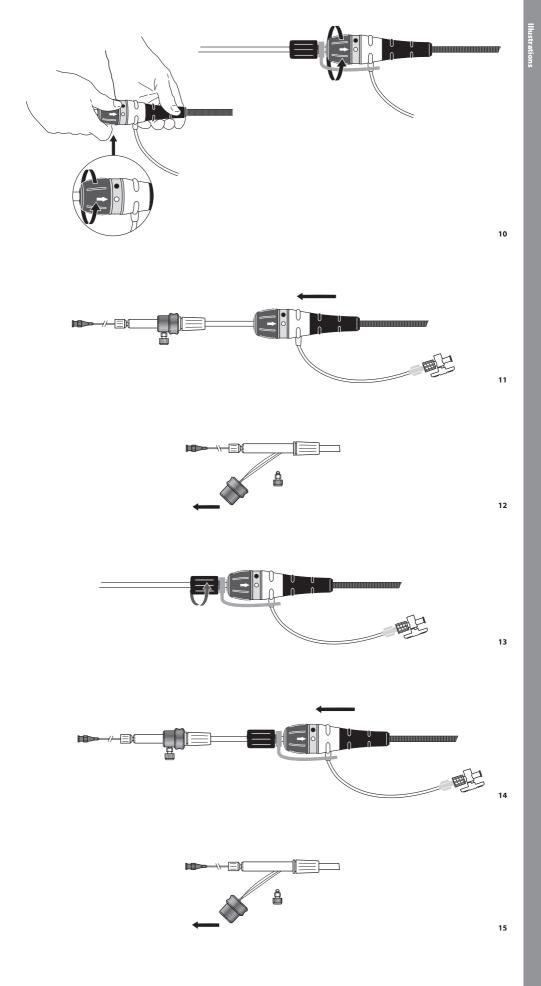
1 [DEVIC	E DESCRIPTION	7
	1.1	Zenith Dissection Endovascular System	7
	1.2	Zenith TX2 Dissection Endovascular Graft with Pro-Form	7
	1.3	Thoracic Z-Trak Plus Introduction System	7
	1.4	The Zenith Dissection Endovascular Stent	
	1.5	Thoracic Z-Trak Plus Introduction System	7
21	NTEN	IDED USE	7
3 (ONT	RAINDICATIONS	7
4١	VARN	IINGS AND PRECAUTIONS	7
	4.1	General	
	4.2	Patient Selection, Treatment and Follow-Up	
	4.3	Implant Procedure	
	4.4	MRI Information	8
5 F	POTE	NTIAL ADVERSE EVENTS	8
6 (CAL STUDIES	8
	6.1	Study Design	8
		6.1.1 Clinical Inclusion and Exclusion Criteria	9
		6.1.2 Follow-up Schedule	9
		6.1.3 Clinical Endpoints	9
	6.2	Accountability of PMA Cohort (Through 12 Months)	9
	6.3	Study Population Demographics and Baseline Parameters	
	6.4	Safety and Effectiveness Results (Through 12 Months)	
		6.4.1 Additional Safety Results	
		6.4.2 Additional Effectiveness Results	
	6.5	Post-Approval Study	28
7 F	ATIE	NT SELECTION AND TREATMENT	39
	7.1	Individualization of Treatment	39
8 F	ATIE	NT COUNSELING INFORMATION	.39
		NT COUNSELING INFORMATION	
9 I	low	SUPPLIED	.39
9 I	IOW CLIN	SUPPLIED	. 39 . 40
9 I	HOW CLIN 10.1	SUPPLIED IICAL USE INFORMATION Physician Training	. 39 . 40 40
9 I	HOW CLIN 10.1 10.2	SUPPLIED IICAL USE INFORMATION Physician Training Inspection Prior to Use	. 39 . 40 40 40
9 I	HOW CLIN 10.1 10.2 10.3	SUPPLIED IICAL USE INFORMATION Physician Training	. 39 .40 40 40 40
9 I	HOW CLIN 10.1 10.2 10.3 10.4	SUPPLIED IICAL USE INFORMATION Physician Training Inspection Prior to Use Materials Required	. 39 40 40 40 40 40
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5	SUPPLIED	. 39 40 40 40 40 40 40
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED IICAL USE INFORMATION Physician Training Inspection Prior to Use Materials Required Device Diameter Sizing Guidelines Device Length Selection Guidelines ECTIONS FOR USE	. 39 40 40 40 40 40 40
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	.39 .40 40 40 40 40 40 40
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED IICAL USE INFORMATION Physician Training Inspection Prior to Use Materials Required Device Diameter Sizing Guidelines Device Length Selection Guidelines CTIONS FOR USE Preparation/Flush of the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular	.39 .40 40 40 40 40 40 40
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	.39 .40 40 40 40 40 40 41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	40 40 40 40 40 40 40 41 41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE	SUPPLIED	
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1	SUPPLIED	
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2	SUPPLIED	
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2 11.2	SUPPLIED	.39 .40 .40 .40 .40 .40 .41 .41 .41 .41 .41 .41 .41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2 11.2 IMAG 12.1	SUPPLIED	.39 .40 .40 .40 .40 .40 .41 .41 .41 .41 .41 .41 .41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2 11.2 IMAC 12.1 12.2	SUPPLIED	.39 .40 .40 .40 .40 .40 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2 11.2 12.2 12.3	SUPPLIED	.39 .40 .40 .40 .40 .40 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41
9 H 10	HOW CLIN 10.1 10.2 10.3 10.4 10.5 DIRE 11.1 11.2 11.2 12.1 12.2 12.3 12.4	SUPPLIED	.39 .40 .40 .40 .40 .40 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41


- a. Radiopaque markersb. Tapered componentc. Straight component



a. Radiopaque markers


- a. Zenith® TX2® Dissection Endovascular Graft with Pro-Form® Straight Component or Tapered Component
 b. Proximal neck diameter 20-38 mm
- c. Proximal neck length >20 mm
- d. Aortic radius >35 mm
 e. Zenith® Dissection Endovascular Stent
 f. Distal aortic diameter 20-38 mm
- g. Aortic radius >35 mm (endovascular stent component)


3

Illustrations

1

3

ZENITH® DISSECTION ENDOVASCULAR SYSTEM (ZENITH® TX2® DISSECTION ENDOVASCULAR **GRAFT WITH PRO-FORM® AND ZENITH** DISSECTION ENDOVASCULAR STENT)

Read all instructions carefully. Failure to properly follow the instructions, warnings, and precautions may lead to serious consequences or injury to the patient.

CAUTION: U.S. federal law restricts this device to sale by or on the order of a physician (or a properly licensed practitioner).

CAUTION: All contents of the inner pouch (including the introduction system and endovascular graft/stent) are supplied sterile, for single use only.

1 DEVICE DESCRIPTION

1.1 Zenith Dissection Endovascular System

The Zenith Dissection Endovascular System consists of a stent graft component and a bare stent component. The stent graft component is the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Z-Trak Plus Introduction System. The bare stent component is the Zenith Dissection Endovascular Stent with the Z-Trak Plus Introduction System.

1.2 Zenith TX2 Dissection Endovascular Graft with Pro-Form

The Zenith TX2 Dissection Endovascular Graft with Pro-Form is a one-piece tubular endovascular graft that is intended to seal entry tears and to exclude aneurysms associated with chronic dissections. It is constructed of full-thickness woven polyester fabric sewn to self-expanding stainless steel Cook-Z stents with braided polyester and monofilament polypropylene suture. (Fig. 1) The graft is available in a straight or tapered configuration, both of which are fully stented graft during deployment.

Additionally, the Cook-Z stents provide the necessary attachment and seal of the graft to the vessel wall without the use of barbs. The proximal and distal ends of the graft have an internal sealing stent. To facilitate fluoroscopic visualization of the stent graft, four radiopaque

markers are positioned at each end of the graft. These markers are placed in a circumferential orientation within 1 mm of the most proximal aspect of the graft material and within 1 mm of the most distal aspect of the graft material. The graft is available in diameters ranging from 22 mm to 42 mm, including non-tapered and tapered (4 mm and 8 mm tapered) configurations. There are multiple lengths available for each graft diameter, ranging from 79 to 218 mm.

1.3 Thoracic Z-Trak Plus Introduction System

The Zenith TX2 Dissection Endovascular Graft with Pro-Form is shipped preloaded onto the Z-Trak Plus Introduction System, which is 20 French (7.7 mm OD) or 22 French (8.5 mm OD). These systems use a single trigger-wire release mechanism to secure the endovascular graft onto the introduction system until released by the physician. (Fig. 2) All introduction systems are compatible with a .035 inch wire guide and use the Captor* Hemostatic Valve as well as Flexor* introducer sheath. There is hydrophilic coating on the introduction system tip and sheath.

1.4 The Zenith Dissection Endovascular Stent

The Zenith Dissection Endovascular Stent is a one-piece cylindrical device, with a slight flare in the stent at its proximal end, constructed from self-expanding Dissection Endowascular Stent is used as a distal component together with the Zenith TX2 Dissection Endowascular Stent is used as a distal component together with the Zenith TX2 Dissection Endowascular Graft with Pro- Form.

No graft material is used in this component to avoid coverage of spinal and visceral branch vessels. The Zenith Dissection Endovascular Stent is available in visceral branch vessels. Ine Zenith Dissection Endovascular Stent is available in 2 diameters (36 mm and 46 mm), which come in multiple lengths. The 36mm diameter Dissection Stent is available in 80 mm, 120 mm, and 180 mm lengths, and the 46 mm Dissection Stent is available in 80 mm, 120 mm, and 185 mm lengths. To facilitate fluoroscopic visualization of the stent, four radiopaque markers are positioned on each end of the component. These markers are placed in a circumferential orientation at the most proximal end and most distal end of the Stent.

1.5 Thoracic Z-Trak Plus Introduction System

The Zenith Dissection Endovascular Stent is shipped preloaded onto a 16 French (6 mm OD) Z-Trak Plus Introduction System. (Fig. 4) The introduction system uses a single trigger-wire release mechanism to secure the endovascular stent onto the introduction system until released by the physician. (Fig. 5) The introduction system is compatible with a .035 inch wire guide and uses the Captor Hemostatic Valve as well as the Flexor introducer sheath.

In addition, there is an anti-torque brace at the user interface (adjacent to the valve) to maintain rotational alignment of the sheath relative to the central carrier to which the stent component is attached. There is hydrophilic coating on the introduction system tip and sheath

2 INTENDED USE

The Zenith Dissection Endovascular System (Zenith TX2 Dissection Endovascular Graft with Pro-Form and Zenith Dissection Endovascular Stent) is indicated for the endovascular treatment of patients with Type B aortic dissection. The Zenith TX2 Dissection Endovascular Graft with Pro-Form is intended to seal the entry tears and to exclude aneurysms associated with chronic dissections. The Zenith Dissection Endovascular Stent is intended to be used as a distal component to provide support to delaminated segments of non-aneurysmal aorta with dissection distal to a Zenith TX2 Dissection Endovascular Graft with Pro-Form. The system is indicated for use in patients

having vascular anatomy suitable for endovascular repair, (Fig. 6) including Adequate iliac/femoral access compatible with the required introduction systems

- For the Zenith TX2 Dissection Endovascular Graft with Pro-Form
- · Non-dissected/aneurysmal aortic segments (fixation sites) distal to the left common carotid artery and proximal to the entry tear with a length of at least 20 mm,
- Non-dissected/aneurysmal aortic segments (fixation sites) distal to the left common carotid artery and proximal to the entry tear with a diameter (measured outer-wall-to-outer-wall) of no greater than 38 mm and no less than 20 mm, and
- For the Zenith Dissection Endovascular Stent
 - · Diameter at non-aneurysmal intended implant site (measured outer-wallto-outer-wall) of no greater than 38 mm (true lumen) and no less than 20 mm (total aortic diameter).

3 CONTRAINDICATIONS

The Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent are contraindicated in:

- · Patients with known sensitivities or allergies to stainless steel, polyester, polypropylene, nitinol or gold. Patients with a systemic infection who may be at increased risk of
- endovascular graft/stent infection

4 WARNINGS AND PRECAUTIONS

4.1 General

Read all instructions carefully. Failure to properly follow the instructions, warnings, and precautions may lead to serious consequences or injury to the patient

- · DO NOT place the device in a dissected proximal landing zone. Placement of the device has resulted in proximal post-treatment dissection events (retrograde progression of pre-existing or new Type A dissection) when the dissection extends proximal to the LSA or the proximal landing zone is dissected.
- Always have a qualified surgery team available during implantation of reintervention procedures in the event that conversion to open surgical repair is necessary.
- The Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent should only be used by physicians and teams trained in vascular interventional techniques (catheter-based and surgical) and in the use of this device. Specific training expectations are described in Section 10.1, Physician Training.

Additional/adjunctive endovascular and/or surgical interventions may be required to treat Type B dissections, including conversion to standard open surgical repair following initial endovascular repair should patients experience continued flow in the faise lumen of the dissection which may lead to rupture. Further intervention should be considered for patients exhibiting compromise of organ vessel flow, or inadequate seal/fixation length proximal to the dissection

4.2 Patient Selection, Treatment and Follow-Up

- Access vessel diameter (measured inner-wall to inner-wall) and morphology (tortuosity, occlusive disease, and/or calcification) should be compatible with vascular access techniques and introduction systems of the profile of a 20 French (7.7 mm OD) or 22 French (8.5 mm OD) vascular introducer sheath as is used for the Zenith Dissection Endovascular Graft, compared to 16 French (6.0 mm OD) for the Zenith Dissection Endovascular Stent. Vessels that are significantly calcified, occlusive, tortuous or thrombus-lined may preclude femoral introduction of the endovascular graft and/or may increase the risk of embolization.
- The Zenith TX2 Dissection Endovascular Graft with Pro-Form: Key
 anatomic elements that may affect successful exclusion of the dissection entry tear include severe angulation (radius of curvature <35 mm and localized angulation >45 degrees); short proximal fixation site (<20 mm of non-dissected aorta); necks >38 mm or <20 mm; an inverted funnel shape at the proximal fixation site (greater than 10% increase in diameter over 20 mm of fixation site length); and circumferential thrombus and/or calcification at the arterial fixation sites. Irregular calcification and/or plaque may compromise the attachment and sealing at the fixation site. Necks exhibiting these key anatomic elements may be more conducive to graft migration and or loss of seal.
- The Zenith Dissection Endovascular Stent: Key anatomic elements that may affect successful treatment of dissection include severe angulation (radius of curvature <35 mm and localized angulation >45 degrees) and aortic true lumen diameters >38 mm or total aortic (true lumen plus false lumen) diameter <20 mm.
- The safety and effectiveness of the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent have not been evaluated in the following patient populations:
 - chronic Type B dissections
 - acute, uncomplicated Type B dissection
 - allergy to stainless steel, nitinol, polyester, polypropylene, or gold bowel necrosis
 - ASA class V

 - diagnosed or suspected genetic connective tissue disease (e.g., Marfans or Ehlers-Danlos Syndrome females who are pregnant, breastfeeding, or planning to become pregnant
 - within 60 months
 - patients less than 18 years of age
 - systemic infection (e.g., sepsis)
 - previous placement of thoracic endovascular graft
 - prior open repair involving descending thoracic aorta (including suprarenal aorta and/or arch)
 - surgical or endovascular AAA repair within 30 days before or after dissection repair
 - bleeding diathesis, uncorrectable coagulopathy, or refuses blood transfusion
 - · hemorrhagic stroke within 30 days (or 14 days for embolic stroke) · untreatable reaction to contrast, which cannot be adequately premedicated
 - · inability to preserve the native left common carotid artery and celiac artery origins
 - if occlusion of the left subclavian artery ostium is required to obtain adequate neck length for fixation and sealing, transposition or bypass of the left subclavian artery may be warranted.
- The long-term performance of the endovascular graft and stent has not yet been established. All patients should be advised that endovascular treatment requires life-long, regular follow-up to assess their health and the performance of their endovascular graft and/or stent. Patients with specific performance or their endovascular graft and/or stent. Patients with specific clinical findings (e.g., persisting flow in the false lumen, enlarging aneurysms, or changes in the structure or position of the endovascular graft and or stent) should receive enhanced follow-up. Specific follow-up guidelines are described in Section 12, IMAGING GUIDELINES AND POSTOPERATIVE EDULOW-UP. FOLLOW-UP
- The graft and stent are not recommended in patients unable to undergo, or who will not be compliant with, the necessary preoperative and postoperative imaging and implantation studies described in Section 12, IMAGING GUIDELINES AND POSTOPERATIVE FOLLOW-UP.
- The graft and stent are not recommended for patients whose weight or size would compromise or prevent the necessary imaging requirements
- Graft implantation may increase the risk of paraplegia where graft exclusion covers the origins of dominant spinal cord or intercostal arteries.
- Highly patent intercostal aortic branches or large collateral vessels are likely to result in retrograde flow after thoracic graft implantation. Patients with uncorrectable coagulopathy may also have an increased risk of Type II ndoleak or bleeding complications.

4.3 Implant Procedure

The following apply to both the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent:

- Strict adherence to the sizing guidelines provided in Sections 10.4 and 10.5 is strongly recommended in order to mitigate the risk for events that could result from selecting inappropriate device sizes. Undersizing has resulted in migration, endoleak/entry-flow and false lumen growth.
- Table 1 incorporates appropriate graft oversizing. Sizing outside of the recommendations provided in **Table 1**, including that which could result from a difference in location of graft deployment relative to the location used for graft sizing, has resulted in false lume nexpansion, endoleak/entry-flow, and migration. Fracture, device infolding, thrombosis, or compression may also result.
- Systemic anticoagulation should be used during the implantation procedure based on hospital and physician preferred protocol. If heparin is contraindicated, an alternative anticoagulant should be used.
- Minimize handling of the constrained endoprosthesis during preparation and insertion to decrease the risk of endoprosthesis contamination and infection.

- To activate the hydrophilic coating on the outside of the sheath, the surface must be wiped with sterile gauze pads soaked in saline solution. Always keep the sheath hydrated for optimal performance.
- Maintain wire guide position during introduction system insertion.
 Do not bend or kink the introduction system. Doing so may cause damage to the introduction system and the graft/stent.
- Always use fluoroscopy for guidance, delivery, and observation of the graft/stent within the vasculature.
- The use of the graft/stent requires administration of intravascular contrast. Patients with pre-existing renal insufficiency may have an increased risk of renal failure postoperatively. Care should be taken to limit the amount of contrast media used during the procedure.
- contrast media used during the procedure. • To avoid twisting the endovascular graft and/or stent, never rotate the introduction system during the procedure. Allow the device to conform naturally to the curves and tortuosity of the aorta.
- As the sheath is withdrawn, anatomy and graft/stent position may change. Constantly monitor graft position and perform angiography to check position as necessary.
- Incorrect deployment or migration of the graft and/or stent may require surgical intervention.
- Do not continue advancing the wire guide or any portion of the introduction system if resistance is felt. Stop and assess the cause of resistance; vessel, catheter, or graft damage may occur. Exercise particular care in areas of stenosis, intravascular thrombosis, or calcified or tortuous vessels.
- Use caution during manipulation of catheters, wires and sheaths within a dissection. Significant disturbances may dislodge fragments of thrombus, which can cause distal or cerebral embolization.
- Avoid damaging the graft and/or stent or disturbing graft/stent positioning after placement in the event reinstrumentation (secondary intervention) of the graft/stent is necessary.
- Do not attempt to re-sheath the graft or stent after partial or complete deployment.
- To avoid entangling any catheters left in situ, rotate the introduction system during withdrawal.
- Any sources for false lumen perfusion left untreated during the implantation procedure should be carefully followed after implantation.

The following apply to the Zenith TX2 Dissection Endovascular Graft with Pro-Form:

- Landing the proximal end of the device in dissected tissue could increase the risk of damage to the septum and could lead to new septal tears, aortic rupture, retrograde dissection, or other complications.
- Inaccurate placement, incomplete sealing, inadequate oversizing, or lack of complete circumferential wall contact along the entire length of the Zenith TX2 Dissection Endovascular Graft with Pro-Form within the vessel may result in increased risk of endoleak, migration, or inadvertent occlusion of the left subclavian, left common carotid, and/or celiac arteries.
- Consider the potential effects of hypovolemia on aortic diameters when selecting the device size.
- If placing multiple grafts, ensure a minimum of 2 stent overlap.
- Unless medically indicated, do not deploy the Zenith TX2 Dissection Endovascular Graft with Pro-Form in a location that will occlude arteries necessary to supply blood flow to organs or extremities. Do not cover significant arch or mesenteric arteries (exception may be the left subclavian artery) with the endoprosthesis. Vessel occlusion may occur. If a left subclavian artery is to be covered with the device, the clinician should be aware of the possibility of compromise to cerebral and upper limb circulation.
- Repositioning the stent graft distally after partial deployment of the covered proximal stent may result in damage to the stent graft and/or vessel injury.
 Molding balloon use is optional, and if used, it should not be inflated in the
- Molding balloon use is optional, and if used, it should not be inflated in the aorta outside of the graft. Additionally, complete deflation of the balloon should be confirmed prior to repositioning. For added hemostasis, the Captor Hemostatic Valve can be loosened or tightened to accommodate the insertion and subsequent withdrawal of a molding balloon.

The following apply to the Zenith Dissection Endovascular Stent:

- Use of the Zenith Dissection Endovascular Stent in an aneurysmal segment of a chronic dissection is not recommended.
- As the sheath is withdrawn, do not advance the introduction system. Doing so can cause the stent to become inverted.
- As the sheath is withdrawn, stabilize the gray positioner (introduction system shaft). Doing so may prevent elongation of the stent.
- Overlapping of bare stent(s) or overlap with the Zenith TX2 Dissection Endovascular Graft with Pro-Form Straight Component or Tapered Component is left to the discretion of the implanting physician. Factors affecting whether or not to overlap, such as locations of reentries or expanded false lumen, should be judged by individual patient anatomy.
 When overlapping the bare stent within the stent graft component, no more than one-half of a partially overlapped bare stent body should be non-overlapped, so as to prevent flaring of the bare stent.
- If the distal end of the stent will be deployed in a funnel-shaped or angulated section of the aorta, or if the distal end of the stent appears conical in shape upon deployment, it is recommended to extend the treated segment distally with an additional stent, or choose a longer stent so it ends in a straight part of the aorta. Similarly, if the distal end of the stent will be deployed at the level of the diaphragm, or in a segment adjacent to the origin of the Celiac Trunk, Superior Mesenteric Artery and/or Renal Arteries, it is also recommended to extend the treated segment distally with an additional stent or choose a longer stent.
- Use of a molding balloon inside a section of aorta treated with the Zenith Dissection Endovascular Stent is not recommended.
- Avoid twisting or rotating the gray positioner against the introducer sheath assembly. Doing so may cause the loaded stent to become entangled and to deploy in a twisted state, or not to release from the introduction system.
- Exercise caution when manipulating a wire guide through an in-situ Zenith Dissection Endovascular Stent; the wire guide may become entangled with the stent.

4.4 MRI INFORMATION

Nonclinical testing has demonstrated that the Zenith TX2 Dissection Endovascular Graft with Pro-Form overlapped with the nitinol Zenith Dissection Endovascular Stent is MR Conditional according to ASTM F2503. A patient with these devices can be scanned safely in a 1.5 T or 3.0 T MR system using the specific testing parameters described in **Section 12.4, MRI Information**.

5 POTENTIAL ADVERSE EVENTS

Adverse events that may occur and/or require intervention include, but are not limited to: • Amputation

· Anesthetic complications and subsequent problems (e.g., aspiration)

- Aortic enlargement
- Aortic rupture and death
- Aortic damage, including perforation, dissection, bleeding, and rupture
- Arterial or venous thrombosis and/or pseudoaneurysm
- Bleeding, hematoma, or coagulopathy
- Bowel complications (e.g., ileus, transient ischemia, infarction, necrosis)
 Cardiac complications and subsequent problems (e.g., arrhythmia,
- cardiac complications and subsequent problems (e.g., arrhythmia, tamponade, myocardial infarction, congestive heart failure, hypotension, hypertension)
- Claudication (e.g., buttock, lower limb)
 Death
- Dissection extension (i.e., either proximal or distal extension)
- Edema
- Embolization (micro and macro) with transient or permanent ischemia or infarction
- Endoleak
 Endoprosthesis: improper component placement; incomplete component deployment; poor conformability of the graft to the vessel wall; component migration and/or separation; suture break; occlusion; infection; stent fracture; graft material wear; dilatation; erosion; puncture and perigraft flow
- Fever and localized inflammation
- Fistula (e.g., aortobronchial, aortoesophageal, arteriovenous)
 Genitourinary complications and subsequent problems (e.g., ischemia, erosion, fistula, urinary incontinence, hematuria, infection)
- Hepatic failure
- Impotence
- Infection of the dissection, device or access site, including abscess formation, transient fever and pain
- Local or systemic neurologic complications and subsequent problems (e.g., stroke, transient ischemic attack, paraplegia, paraparesis, spinal cord shock, paralysis)
- Lymphatic complications and subsequent problems (e.g., lymph fistula)
- lymphocele)
- Occlusion of device or native vessel
 Persisting flow in the false lumen
- Pulmonary/respiratory complications and subsequent problems (e.g.,
- pneumonia, respiratory failure, prolonged intubation) • Renal complications and subsequent problems (e.g., artery occlusion, contrast burieficiency efficiency efficiency)
- toxicity, insufficiency, failure)

 Surgical conversion to open repair
- Unintentional dissection septum rupture
- Vascular access site complications, including infection, pain, hematoma, pseudoaneurysm, arteriovenous fistula
- Vascular spasm or vascular trauma (e.g., ilio-femoral vessel dissection, bleeding, rupture, death)
- · Wound complications and subsequent problems (e.g., dehiscence, infection)

Device Related Adverse Event Reporting

Any adverse event (clinical incident) involving the Zenith Dissection Endovascular System (graft or stent) should be reported to Cook immediately. To report an incident, call the Customer Relations Department at 800.457.4500 (24 hour) or 812.339.2235.

6 CLINICAL STUDIES

The Zenith Dissection Endovascular System is a line extension to the Zenith family of endovascular devices. The Dissection Endovascular Graft is similar to other endovascular grafts in the product line, but is designed specifically for treatment of dissections, having no barbs. Information from previous clinical studies and clinical use of the Zenith endovascular grafts provides a foundation for the expected clinical performance of the Dissection Endovascular Graft, including placement in aneurysmal aortic segments.

The clinical study of the Zenith Dissection Endovascular System enrolled patients with acute, complicated dissections and included implantation of the Dissection Endovascular Graft and the Dissection Stent.

Data from the clinical study performed on use of Zenith Dissection Endovascular System for the treatment of acute, complicated Type B aortic dissection are presented below.

6.1 Study Design

Patients were treated between August 4, 2012 and January 15, 2015. The clinical study results presented herein reflect data collected through 5-year follow-up completion on January 27, 2020. A total of 73 patients (67 US, 6 Japan) were enrolled across 22 investigational sites (21 US, 1 Japan).

This study was a prospective, nonrandomized, single-arm, multinational/ multicenter clinical study based on binomial distribution for hypothesis testing. Because acute, complicated dissections are life-threatening, the primary endpoint for the study was the survival rate at 30 days. The performance goal for this endpoint (79.4%) was an adjusted rate based on the survival rate at 30 days in the Society of Vascular Surgery (SVS) dataset, which includes pooled data from physician-sponsored studies reported by the SVS Outcomes committee. Null Hypothesis: The survival rate at 30 days, rs(30), does not meet the performance goal (79.4%).

H₀: π₅(30) ≤ 79.4%

Alternate Hypothesis: The survival rate at 30 days, π s(30), meets the performance goal (79.4%).

$H_A: \pi_{s(30)} > 79.4\%$

There was an additional hypothesis-driven safety endpoint of freedom from Major Adverse Events (MAEs) at 30 days. The performance goal for this endpoint (51.2%) was an adjusted rate based on the rate of freedom from MAEs at 30 days in the SVS dataset.

Null Hypothesis: The freedom from MAE at 30 days, $\pi s(30),$ does not meet the performance goal (51.2%).

$H_0: \pi_{s(30)} \le 51.2\%$

Alternate Hypothesis: The freedom from MAE at 30 days, π s(30), meets the performance goal (51.2%).

$H_{A}: \pi_{s(30)} > 51.2\%$

Forty patients were necessary to assess the primary hypothesis, under an expected 30-day survival rate of 94.9% (estimated from a feasibility study conducted under G070123 for a previous design of the dissection graft and stent), with a one-sided exact binomial test, at a type I error rate of 0.025 and a power of 0.8.

Sixty patients were necessary to assess the additional hypothesis-driven endpoint, under an expected rate of freedom from 30-day MAE at 69.2% (estimated from a feasibility study conducted under G070123 for a previous design of the dissection graft and stent), with a one-sided exact binomial test, at a type I error rate of 0.025 and a power of 0.8.

A sample size of 67 was initially established to account for possible loss to followup. During the course of the study, the sample size was increased to 73 patients in order to account for six previously enrolled US patients who should have been excluded from the study according to additional medical exclusion criteria that were implemented subsequent to enrollment initiation (none of the six had confirmed absence of bowel necrosis at the time of enrollment). While the data from all 73 patients enrolled in the study are reported (enrollment IDs for the six excluded patients are italicized and indicated by footnotes where applicable), the

hypotheses were assessed based on the 67 patients enrolled according to the inclusion/exclusion criteria.

All other endpoints were analyzed descriptively.

Even though the endpoints are at 30-days, data through 12-month post-procedure was required and has been provided on all surviving patients. This provides information on the ability of the Dissection Endovascular Graft to seal entry tears covered by the device and the ability of the Dissection Stent to provide support to delaminated segments of aortic dissections distal to the Dissection Endovascular Graft.

An independent core laboratory analyzed all patient imaging. An independent clinical events committee (CEC) adjudicated at a minimum all patient deaths, conversions to open repair, rupture, Type A dissections, and stroke. An independent data safety monitoring board (DSMB) monitored the clinical trial according to an established safety monitoring plan.

6.1.1 Clinical Inclusion and Exclusion Criteria

Enrollment in the study was limited to patients who had an acute, complicated, Type B aortic dissection with at least one of the following characteristics:

 Aortic rupture; or Branch vessel obstruction/compromise resulting in malperfusion

Patients were **not** permitted to enroll in the study if they met any of the

following exclusion criteria:

General Exclusion Criteria

- Age <18 years (<20 years for Japan);
- Other medical condition (e.g., cancer, congestive heart failure) that may cause the patient to be noncompliant with the Clinical Investigation Plan, confound the results, or is associated with limited life expectancy (i.e., less than 2 years); Pregnant, breast-feeding, or planning on becoming pregnant within 60 months:
- · Unwilling or unable to comply with the follow-up schedule;
- Inability or refusal to give informed consent; or
- · Simultaneously participating in another investigative device or drug study. (The patient must have completed the primary endpoint of any previous study at least 30 days prior to enrollment in this study.)
- dical Exclusion Criteria
- Suspicion of bowel necrosis (as determined by the implanting physician based on imaging observations, peritoneal signs, surgical exploration, elevated serum lactate levels, and/or acidosis):
- American Society of Anesthesiologist (ASA) risk class V (i.e., moribund patient not expected to live 24 hours with or without operation);
- Embolic stroke within the last 14 days prior to potential enrollment in the study or hemorrhagic stroke within 30 days prior to potential enrollment in the study;
- Diagnosed or suspected congenital degenerative connective tissue disease (e.g., no Marfan's or Ehlers-Danlos syndrome);
- Systemic infection (e.g., sepsis);
- · Bleeding diathesis, uncorrectable coagulopathy, or refuses blood transfusion; Allergy to stainless steel, polyester, solder (tin, silver), polypropylene, nitinol, or gold
- · Untreatable reaction to contrast, which, in the opinion of the investigator, cannot be adequately pre-medicated;
- Surgical or endovascular abdominal aortic aneurysm (AAA) repair within 30 days before or after dissection repair;

- Previous placement of a thoracic endovascular graft;
- Prior open repair involving descending thoracic aorta including suprarenal aorta and/or arch; or
- Interventional and/or open surgical procedures (unrelated to dissection) within 30 days before or after dissection repair.

atomical Exclusion Criteria

 Dissection of aorta proximal to left subclavian artery (either primary entry tear or most proximal extent of dissection);

- Proximal stent graft component:
- Aortic arch radius of curvature <35 mm (if device deployed in the arch); Proximal landing zone length measuring <20 mm between the left common carotid artery and most proximal extent of dissection (covering left subclavian artery is acceptable, except in patients with a dominant vertebral artery off of the arch in the region of the subclavian or a dominant vertebral off of the subclavian):
- · Proximal landing zone diameter for proximal stent graft component <20 mm or >38 mm, measured outer-wall to outer-wall on a sectional image or multiplanar reconstruction;
- Distal landing zone diameter for proximal stent graft component <20 mm (estimate based on transaortic diameter) or >38 mm (estimate based on true lumen diameter), measured outer-wall to outer-wall on a sectional image or multiplanar reconstruction
- · Prohibitive calcification, occlusive disease, or angulation in intended proximal landing zone;
- · Circumferential thrombus in region of intended proximal landing zone; · Inability to preserve the native left common carotid artery and celiac artery origins
- Distal bare stent component:
- Diameter <20 mm (estimate based on transaortic diameter) or >38 mm (estimate based on true lumen diameter) for any segment of vessel into which deployment of bare stent device is intended, measured outer-wall to outer-wall on a sectional image or multiplanar reconstruction;
- Prohibitive angulation in segments of vessel into which deployment of bare stent device is intended (e.g., radius of curvature <35 mm, or localized angle >45 degrees);
- Both iliac arteries having prohibitive tortuosity, calcification, occlusive disease or arterial diameter, measured inner-wall to inner-wall on a sectional image, that are not conducive to placement of the introducer sheath (use of access conduit permitted); or
- Aneurysm or angulation in the distal thoracic aorta that would preclude advancement of the introduction system.

6.1.2 Follow-up Schedule

All patients were scheduled to return for follow-up examinations at 30 days. 6 months, 12 months, and then annually through 5 years postoperatively Preoperatively, patients underwent a clinical exam, blood test, and CT scan, as also shown in **Table 1**. Postoperatively, the objective parameters measured during the study based on CT included assessment of the total aortic, true lumne, and false lumen diameters at multiple locations, presence of and sources for false lumen flow, extent of false lumen thrombosis, progression of dissection, branch vessel patency, and device position and integrity. Adverse events and complications were recorded at all visits.

The key timepoints are shown below in **Table 1** as well as the tables that follow summarizing safety and effectiveness.

Table 1 – Study Follow-up Schedule

	Pre- operative	Intra- operative	Post- procedure	30-day (± 10 days)	6-month (± 30 days)	12-month (± 45 days)	2-year to 5 year ^e
Clinical exam	х		Х	Х	х	х	Х
Blood tests ^a	х		Х	Х	х	х	Xf
Contrast CT scan	х		х	c,d	Xc	Xc	Xc
Angiography	Xp	х					

^a Including tests to evaluate kidney and liver function.

^b Required only to resolve any uncertainties in anatomical n rements necessary for graftsizing

^c Transesophageal echocardiography (TEE) or non-contrast CT imaging may be used for those patients experiencing documented renal failure (eGFR<30) or who are otherwise unable to undergo contrast enhanced CT scar

^d CT must be performed prior to hospital discharge. In case of impaired renal function at the time of discharge, CT may be performed at 30 days. e 2 years (730 ± 60 days), 3 years (1095 ± 60 days), 4 years (1460 ± 90 days), and 5 years (1825 ± 90 days).

f Required only for patients with malperfunsion that has not stabilized.

6.1.3 Clinical Endpoints

With regards to safety and effectiveness, the primary endpoint is the survival rate at 30 days.

With regards to safety, an additional hypothesis-driven endpoint for the study was freedom from major adverse events (MAEs) at 30 days. MAEs were defined as the following: myocardial infarction, chronic renal insufficiency/chronic renal failure requiring dialysis, bowel ischemia, stroke, paraplegia or paraparesis, and prolonged (>72 hours) ventilatory support.

With regards to success/failure criteria, the study would be considered successful if both performance goals were met.

Additional (secondary) endpoints that were evaluated, not for the purpose of statistical inference, included changes in aortic, true and false lumen size, presence of and sources for false lumen flow, extent of false lumen thrombosis progression of dissection, branch vessel patency, secondary interventions, and device migration and integrity.

6.2 Accountability of PMA Cohort (Through 12 Months)

At the time of the database lock for the PMA (March 14, 2017), of 73 patients enrolled in the PMA study, 94.5% (69) were available for 30-day follow-up and 78.1% (57) were available for 12-month follow-up, as there were 4 deaths within 30 days and 9 deaths as well as 3 patients who withdrew from the study or became lost to follow-up between the 30-day and 12-month visits; these 12-month follow-up availability results were unchanged through completion of 5-year follow-up. **Table 2** reports the follow-up availability through 12 months. nletion of Of the 73 patients enrolled in the study, 79.5% (58) received at least one Dissection Endovascular Graft and one Dissection Stent during the index procedure, while the remaining 20.5% (15) received only a Dissection Endovascular Graft, not a Dissection Stent. Although the study was not powered to assess for differences in outcomes based on the different component combinations (namely the presence vs. absence of a Dissection Stent), the results were analyzed and reported separately for the following groups where appropriate: total patient population, cohort with a Dissection Stent, and cohort without a Dissection Stent

Table 2 – Follow-up Availability

			of Data le (Site)	Adequa	ate Imaging	to Assess the	Parameter	(Core Labor	atory)	Events	Occurrii Inte		e Next
Follow-up Visits ^c	Patients Eligible for Follow- up	Clinical Assessment	Ê	Size Increase in Stent graft	Size Increase in Dissection Stent ^b	Entry-flow in Thoracic Aorta	Entry-flow in Abdominal Aorta	Migration	Device Integrity	Death	Conversion	LTF*/ WTHD**	Not Due for Next Visit
Postoperative	73	100.0% (73/73)	53.4% (39/73)	NA	NA	45.2% (33/73)	45.2% (33/73)	NA	49.3% (36/73)	4	0	0	0
30-day	69	97.1% (67/69)	76.8% (53/69)	NA	NA	71.0% (49/69)	68.1% (47/69)	NA	75.4% (52/69)	1	0	1	0
6-month	67	77.6% (52/67)	83.6% (56/67)	98.2% (55/67)	84.6% (44/52)	76.1% (51/67)	70.1% (47/67)	74.6% (50/67)	83.6% (56/67)	8	0	2	0
12- month	57	86.0% (49/57)	89.5% (51/57)	92.2% (47/57)	84.8% (39/46)	82.5% (47/57)	78.9% (45/57)	80.7% (46/57)	86.0% (49/57)	2	1	5	0

* LTF: lost-to-follow-up; ** WTHD: withdrawal.

^a Per clinical investigation plan amendment 11-007-04, a patient is required to have a CT scan prior to discharge unless the patient has renal issues; in this case, the patient will have the CT scan completed at the 1-month visit.

^b Size increase in Dissection Stent assessment only applies to patients who received a Dissection Stent.
 ^c Follow-up visit windows as follows: 30 days (± 10 days), 6 months (180 ± 30 days), 12 months (365 ± 45 days).

6.3 Study Population Demographics and Baseline Parameters

The demographics and baseline parameters of the study population are typical for an acute, complicated Type B aortic dissection study performed in the US. The demographics, pre-existing comorbid medical conditions, and presenting complications were compared between this study and SVS dataset to support the use of the performance goals based on the SVS dataset. Comparisons were also made between two patient groups within the study; patients who received and patients who did not receive a Dissection Stent.

Partially due to the small number of patients, few statistically significant differences were found when comparing populations, despite numerical differences. None of the differences were found to be clinically meaningful with respect to supporting the performance goals. Some of the differences in the patient groups within the study population are likely associated with the greater percentage of patients who did not receive the Dissection Stent having been treated for rupture rather than malperfusion. Comparisons are not presented between the US and Japanese patients as only 6 patients were treated in Japan. Four patients presented with rupture, one patient presented with rupture and malperfusion, and one patient presented with malperfusion alone; none received the Dissection Stent.

Demographics

The demographics and patient characteristics are presented in **Table 3**. Of the demographic and patient data in the present study compared with that of the SVS dataset, only the ethnicity/race distribution was significantly different (p = 0.046), which is not expected to be clinically significant with respect to evaluating the safety and effectiveness endpoints. Similarly, with the exception of the ethnicity distribution, the demographics appeared comparable between patients who either received or did not receive a Dissection Stent.

Table 3 – Demographics and Patient Characteristics

	Mean \pm SD (N, range) or Percent Patients (number/total number)						
Demographic	Without Dissection Stent	With Dissection Stent	All Pivotal Patients	SVS Acute Patients			
Age (years) All patients	65.1 ± 13.1 (15, 42 - 81)	59.5 ± 10.1 (58, 34 - 77)	60.7 ± 10.9 (73, 34 - 81)	58.8 ± 15.4 (85, 25.9 - 88.6)			
Gender Male Female	53.3% (8/15) 46.7% (7/15)	69.0% (40/58) 31.0% (18/58)	65.8% (48/73) 34.2% (25/73)	72.9% (62/85) 27.1% (23/85)			
Ethnicity/Race ^a White Hispanic or Latino Black or African American First Nations ^b Asian	33.3% (5/15) 0% 20.0% (3/15) 0% 46.7% (7/15)	67.2% (39/58) 5.2% (3/58) 25.9% (15/58) 0% 1.7% (1/58)	60.3% (44/73) 4.1% (3/73) 24.7% (18/73) 0% 11.0% (8/73)	52.9% (45/85) 14.1% (12/85) 27.1% (23/85) 2.4% (2/85) 3.5% (3/85)			
Height (in)	64.4 ± 3.6 (15, 59.8 - 72.0)	68.5 ± 4.4 (58, 59 - 76)	67.7 ± 4.5 (73, 59 - 76)	NC*			
Weight (lbs)	167.8 ± 38.9 (15, 116.0 - 255.2)	202.5 ± 55.9 (58, 101.2 - 356.4)	195.1 ± 54.4 (73, 101.2 - 356.4)	NC*			
Body mass index (BMI)	28.4 ± 5.5 (15, 21.4 - 40.0)	30.0 ± 7.2 (57, 16.3 - 50.6)	29.7 ± 6.9 (72, 16.3 - 50.6)	NC*			

* NC: not collected.

^a Ethnicity/race distribution difference was significant between the pivotal study and SVS dataset (p = 0.046).

^b First Nations includes American Indian/Alaskan Native, and Native Hawaiian/Pacific Islander.

Medical History and Comorbidities

Medical history and comorbid conditions are presented in **Table 4**. None of the differences in the medical histories of patients enrolled in the present study

Table 4 – Medical History and Comorbid Conditions

and those recorded in the SVS dataset are statistically significant. A history of aneurysm or dissection is the biggest difference in patient groups within the study, being more prevalent in patients that did not receive a Dissection Stent.

	Percent Patients (number/total number)					
Medical History	Without Dissection Stent	With Dissection Stent	All Pivotal Patients	SVS Acute Patients		
Cardiovascular						
Previous myocardial infarction Previous symptomatic congestive heart failure Coronary artery disease Cardiac arrhythmia	13.3% (2/15) 0% (0/15) 20.0% (3/15) 20.0% (3/15)	3.4% (2/58) 3.4% (2/58) 15.5% (9/58) 13.8% (8/58)	5.5% (4/73) 2.7% (2/73) 16.4% (12/73) 15.1% (11/73)	11.8% (10/85) 10.6% (9/85) NC* 11.8% (10/85)		
Vascular						
Thromboembolic event Peripheral vascular disease Family history of aneurysm or dissection Patient history of aneurysm or dissection Hypertension Previous thoracic surgery or thoracic trauma Aortobronchial fistula Aortoesophageal fistula Bleeding diathesis or uncorrectable coagulopathy Carotid endarterectomy Diagnosed or suspected congenital degenerative collagen disease	0% 6.7% (1/15) 0% 60.0% (9/15) 100.0% (9/15) 26.7% (4/15) 0% 0% 0% 0% 0% 0%	8.6% (5/58) 3.4% (2/58) 6.9% (4/58) 22.4% (13/58) 82.8% (4/58) 0% 0% 0% 0% 0% 0%	6.8% (5/73) 4.1% (3/73) 5.5% (4/73) 30.1% (22/73) 86.3% (63/73) 13.7% (10/73) 0% 0% 0% 0%	NC* 2.4% (2/85) NC* NC* 83.5% (7/185) NC* NC* NC* NC* NC*		
Pulmonary Chronic obstructive pulmonary disease	40.0% (6/15)	15.5% (9/58)	20.5% (15/73)	10.6% (9/85)		
Renal Chronic renal insufficiency or dialysis	6.7% (1/15)	8.6% (5/58)	8.2% (6/73)	7.1% (6/85)		
Endocrine Diabetes	0%	5.2% (3/58)	4.1% (3/73)	12.9% (11/85)		
Infectious disease Previous diagnosis of sepsis	0%	0%	0%	NC*		
Hepatobiliary Liver disease	6.7% (1/15)	1.7% (1/58)	2.7% (2/73)	0% (0/85)		
Neoplasms Cancer	20.0% (3/15)	8.6% (5/58)	11.0% (8/73)	9.4% (8/85)		
Neurologic						
Stroke Paraparesis Paralysis Transient ischemic attack	13.3% (2/15) 6.7% (1/15) 0% 6.7% (1/15)	5.2% (3/58) 5.2% (3/58) 3.4% (2/58) 3.4% (2/58)	6.8% (5/73) 5.5% (4/73) 2.7% (2/73) 4.1% (3/73)	NC* 1.2% (1/85) 2.4% (2/85) 0% (0/85)		
Smoking						
Past Current Never	13.3% (2/15) 40.0% (6/15) 46.7% (7/15)	31.0% (18/58) 50.0% (29/58) 19.0% (11/58)	27.4% (20/73) 47.9% (35/73) 24.7% (18/73)	37.3% (31/83) 32.5% (27/83) 30.1% (25/83)		

* NC: not collected.

ASA Classification

Table 5 reports the ASA classification. The distribution of ASA physical status classifications in the present study was statistically different from that in the SVS dataset, with the SVS patients having more severe disease. However, due to the subjective nature of the ASA classification, and considering the similarities between the present study and the SVS dataset for most other variables, the difference is not considered clinically significant with respect to establishing the performance goals. The majority of patients were class 4 in both the group with a Dissection Stent and group without a Dissection Stent.

Table 5 – ASA Physical Status Classification

	Percent Patients (number/total number)						
ASA Classification ^a	Without Dissection Stent	With Dissection Stent	Total	svs			
Healthy patient (1)	0%	0%	0%	0%			
Mild systemic disease (2)	20.0% (3/15)	5.2% (3/58)	8.2% (6/73)	2.4% (2/85)			
Severe systemic disease (3)	20.0% (3/15)	29.3% (17/58)	27.4% (20/73)	22.4% (19/85)			
Incapacitating systemic disease (4)	60.0% (9/15)	65.5% (38/58)	64.4% (47/73)	64.7% (55/85)			
Moribund patient (5)	0%	0%	0%	10.6% (9/85)			

^a ASA classification distribution difference was significant between the present study and the SVS dataset (p = 0.008).

SVS-ISCVS Risk Score

Table 6 reports the Society for Vascular Surgery/International Society for Cardiovascular Surgery (SVS-ISCVS) risk score. The SVS-ISCVS risk scores were consistent with the preexisting comorbid conditions for the patient population

Table 6 - SVS-ISCVS Risk Score Classification

in the present study. Of the distribution of risk scores, patients who received a Dissection Stent were more likely to present with higher smoking risk scores and higher renal status risk scores, leading to higher total risk scores. SVS-ISCVS risk scores were not reported in the SVS dataset.

		Percent Patients (number/total number)					
SVS-ISCVS Category		Without Dissection Stent	With Dissection Stent	Total			
Diabetes risk score							
	0	100.0% (15/15)	93.1% (54/58)	94.5% (69/73)			
	1	0%	5.2% (3/58)	4.1% (3/73)			
	2	0%	0%	0%			
	3	0%	1.7% (1/58)	1.4% (1/73)			
	4	0%	0%	0%			
moking risk score		======((0(4=)	0.4 E0/ (0.0 /E0)	20 (0) (20 (72)			
	0	53.3% (8/15)	34.5% (20/58)	38.4% (28/73)			
	1 2	6.7% (1/15)	12.1% (7/58)	11.0% (8/73)			
	2	33.3% (5/15) 6.7% (1/15)	32.8% (19/58) 20.7% (12/58)	32.9% (24/73) 17.8% (13/73)			
		0.770 (1/13)	20.7% (12/36)	17.070 (15/75)			
lypertension risk score		6 TO ((() T)		10 201 (0 (70)			
	0	6.7% (1/15)	13.8% (8/58)	12.3% (9/73)			
	1 2	33.3% (5/15) 20.0% (3/15)	20.7% (12/58)	23.3% (17/73) 30.1% (22/73)			
	2	40.0% (6/15)	32.8% (19/58)	34.2% (25/73)			
		40.0% (6/15)	32.8% (19/58)	34.2% (23/73)			
lyperlipidemia risk score				56.00/ (14/20)			
	0	53.3% (8/15)	56.9% (33/58)	56.2% (41/73)			
	2	13.3% (2/15) 0%	12.1% (7/58) 1.7% (1/58)	12.3% (9/73) 1.4% (1/73)			
	2	33.3% (5/15)	29.3% (17/58)	30.1% (22/73)			
	5	55.570 (5715)	29.378 (17736)	30.170 (22/73)			
Cardiac status risk score	0	86.7% (13/15)	89.7% (52/58)	89.0% (65/73)			
	1	13.3% (2/15)	1.7% (1/58)	4.1% (3/73)			
	2	0%	6.9% (4/58)	5.5% (4/73)			
	3	0%	1.7% (1/58)	1.4% (1/73)			
arotid disease risk score							
	0	93.3% (14/15)	94.8% (55/58)	94.5% (69/73)			
	1	6.7% (1/15)	3.4% (2/58)	4.1% (3/73)			
	2	0%	0%	0% (0/73)			
	3	0%	1.7% (1/58)	1.4% (1/73)			
Renal status risk score							
	0	93.3% (14/15)	62.1% (36/58)	68.5% (50/73)			
	1	6.7% (1/15)	31.0% (18/58)	26.0% (19/73)			
	2	0%	5.2% (3/58)	4.1% (3/73)			
	3	0%	1.7% (1/58)	1.4% (1/73)			
Pulmonary status risk score							
	0	80.0% (12/15)	73.7% (42/57)	75.0% (54/72)			
	1	6.7% (1/15)	17.5% (10/57)	15.3% (11/72)			
	2	0%	5.3% (3/57)	4.2% (3/72)			
	3	13.3% (2/15)	3.5% (2/57)	5.6% (4/72)			
Total SVS-ISCVS risk score		4.7 ± 2.4 (15, 1 - 9)	5.5 ± 2.9 (58, 0 - 12)	5.4 ± 2.8 (73, 0 - 12)			
mean ± SD; N, range)		4.7 ± 2.4 (13, 1 - 9)	3.3 ± 2.9 (38, 0 - 12)	5.4 ± 2.8 (73, U - 12)			

Presenting Complications

Presenting complications reported by the site are presented in **Table 7**. The percentage of patients with rupture, malperfusion, or rupture and malperfusion were comparable between the present study and the SVS dataset, though the patient population in the present study significantly more often presented with

obstruction/compromise that also involved the gastrointestinal (p < 0.001) and renal/urologic branch vessels (p = 0.011). Patients who presented with rupture were less likely to receive a Dissection Stent than patients who presented with obstruction or compromise.

Table 7 – Presenting Complications

		Percent Patients (number/total number)						
Complication	Without Dissection Stent	With Dissection Stent	Total	svs				
Rupture	73.3% (11/15)	15.5% (9/58)	27.4% (20/73)	31.8% (27/85)				
Obstruction/compromise of branch vessel	33.3% (5/15)	89.7% (52/58)	78.1% (57/73)	71.8% (61/85)				
Gastrointestinal Renal/urologic Spinal cord Lower extremity Other	40.0% (2/5) 60.0% (3/5) 0% 80.0% (4/5) 0%	59.6% (31/52) 57.7% (30/52) 5.8% (3/52) 53.8% (28/52) 1.9% (1/52)	57.9% (33/57) ^a 57.9% (33/57) ^a 5.3% (3/57) 56.1% (32/57) 1.8% (1/57)	19.7% (12/61)ª 36.1% (22/61)ª 3.3% (2/61) 55.7% (34/61) 8.2% (5/61)				
Rupture and obstruction of branch vessel	6.7% (1/15)	5.2% (3/58)	5.5% (4/73)	3.5% (3/85)				
Persistent pain	93.3% (14/15)	91.4% (53/58)	91.8% (67/73) ^a	76.5% (65/85) ^a				
Size/growth of the transaortic diameter	53.3% (8/15)	15.5% (9/58)	23.3% (17/73)	NC*				
Periaortic effusion (without rupture)	60.0% (9/15)	12.1% (7/58)	21.9% (16/73)	NC*				
Resistant hypertension	40.0% (6/15)	27.6% (16/58)	30.1% (22/73)	43.5% (37/85)				

* NC: not collected.

Persistent pain, gastrointestinal, and renal/urologic obstruction/compromise of branch vessel distribution differences were significant between the present study and the SVS dataset (p =0.010, p <0.001, and p = 0.011, respectively).</p>

Baseline Vessel Measurements

This section reports the results from core laboratory analysis of pre-procedure imaging.

Site vs Core Laboratory Measures

Imaging was reviewed by the clinical study sites to determine adherence to the study selection criteria. All patients enrolled in the study were reported by the sites to meet the selection criteria. However, a total of 33 patients were measured by the core laboratory as having a length <20 mm from the left common carotid (LCC) to the most proximal extent of dissection (**Table 8**), 25 of whom also had a dissection that extended proximal to the left subclavian artery (LSA) according to initial assessments relative to anatomical landmarks (**Table 10**) or based on the Zone classification¹ as also used to describe the extent of Dissection Endovascular Graft and Dissection Stent coverage at the time of the index procedure (**Table 18**, found in the Procedural Information Section). There were 11 additional patients (in whom the length from LCC to proximal extent was either not assessed or measured ≥20 mm by core laboratory) with a dissection that extended proximal the LSA based on the Zone classification. Refer to **Fig. 16** for an overview of these findings.

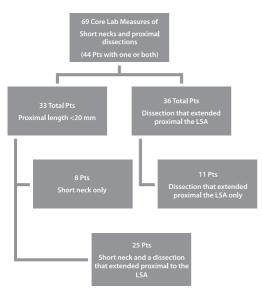


Figure 16. Core laboratory measurements of short necks and/or dissection proximal to the LSA.

Table 8 – Baseline Anatomical Measurements per the Core Laboratory

Also of note, the maximum total aortic diameters (**Table 8**) in locations expected to coincide with likely fixation/seal zones (i.e., just distal to the LCC and just distal to the LSA) exceeded the maximum allowable diameter of 38 mm at pre-procedure (n = 14, which included 12 of the patients with a length <20 mm from the LCC to proximal extent of dissection and/or a dissection that extended proximal to the LSA).

While patients were to be excluded from the study if the length from the LCC to the most proximal extent of dissection was <20 mm, if the dissection extended proximal to the LSA, or if the total aortic diameter was >38 mm in the proximal fixation zone, compliance with the protocol was based on information available at pre-procedure, as assessed by the site, and not the results from subsequent core laboratory analysis of pre-procedure imaging. All site assessments concurred with the requirements in the protocol. Nonetheless, it is important to note that all proximal post-treatment dissection events (4/4), ruptures (2/2), and proximal Type I entry-flow (7/7) within 365 days occurred in this subset of patients with nanomy beyond the intended use, underscoring the need to pay careful attention to these parameters during patient selection, as also emphasized in the labeling.

Length and Diameter

Table 8 reports baseline anatomical measurements per the core laboratory (similar data were not reported in the SVS dataset). The overall results from core laboratory analysis of pre-procedure imaging appear consistent with expectations for the intended study patient population, and the majority of the anatomical measurements for patients who received a Dissection Stent and for those who did not appeared comparable, with the exception of some diameters and lengths, as follows.

With regards to length, patients who did not receive a Dissection Stent (patients who often presented with aortic rupture) typically exhibited more focal dissections (i.e., shorter length of dissected aorta) when compared to patients who received a Dissection Stent (patients who often presented with obstruction/compromise of branch vessels). Additionally, the average length of dissection (408.9 mm) in patients who received a Dissection Stent approached the total length of aorta from the left common carotid artery to the aortic bifurcation, thus indicating near complete involvement of the aorta with dissection. Overall, the trends in length were not surprising given the apparent difference in presenting complications between groups.

With regards to diameter, patients who did not receive a Dissection Stent were more likely to have presented with larger transaortic diameters in the descending thoracic aorta, which is not surprising considering these patients where more often treated for rupture when compared to the patients who received a Dissection Stent. Patients who received a Dissection Stent enter a specifically within the region of the branch vessels (aorta at the level of the celiac artery, SMA, and both renal arteries) as well as in the abdominal aorta, which is also not surprising considering these patients were more fitter there descending these patients in the addominal aorta, which is also not surprising considering these patients were more fitter there descending these patients were more often treated for malperfusion when compared to patients who did not receive a Dissection Stent.

Mean + SD (N. range)

	Mean ± SD (N, range)						
Anatomical Measurements	Without Dissection Stent	With Dissection Stent	Total				
Length (mm)							
LCC to most proximal extent of dissection	26.8 ± 37.7 (13, -11.1 to 118.4)	23.9 ± 38.8 (53, -109.2 to 191.5)	24.5 ± 38.3 (66, -109.2 to 191.5				
LCC to most proximal aspect of primary tear	93.5 ± 56.8 (11, 5.9 - 208.8)	112.2 ± 69.4 (48, 0.9 - 281.7)	108.7 ± 67.2 (59, 0.9 - 281.7)				
From most proximal to most distal aspect of dissection	315.9 ± 100.1 (13, 129.3 - 468.9)	408.9 ± 121.3 (40, 125.2 - 637.2)	386.1 ± 122.4 (53, 125.2 - 637.				
Aortic arch radius of curvature (mm)	26.6 ± 4.9 (15, 19 - 40)	28.2 ± 7.0 (56, 13 - 47)	27.8 ± 6.6 (71, 13 - 47)				
Largest angle in the descending thoracic aorta (degrees)	32.7 ± 27.1 (14, 0 - 99)	31.1 ± 26.6 (55, 0 - 175)	31.4 ± 26.5 (69, 0 - 175)				
Maximum aortic diameter (mm) Just distal to LCC origin							
True lumen	33.3 ± 3.6 (15, 26.3 - 40.5)	32.4 ± 4.3 (56, 16.3 - 43.8)	32.6 ± 4.2 (71, 16.3 - 43.8)				
False lumen	0.4 ± 1.5 (15, 0 - 5.7)	0.6 ± 2.6 (56, 0 - 16.1)	0.6 ± 2.4 (71, 0 - 16.1)				
Total	33.6 ± 3.4 (15, 26.3 - 40.5)	33.1 ± 4.1 (56, 25.7 - 43.8)	33.2 ± 3.9 (71, 25.7 - 43.8)				
Just distal to LSA origin							
True lumen	27.8 ± 6.8 (15, 12.5 - 35.7)	27.7 ± 4.4 (56, 18.2 - 40.3)	27.7 ± 5.0 (71, 12.5 - 40.3)				
False lumen	6.1 ± 8.8 (15, 0 - 26.7)	4.4 ± 4.9 (56, 0 - 17.9)	4.8 ± 5.9 (71, 0 - 26.7)				
Total	33.9 ± 6.2 (15, 26.4 - 51.1)	32.1 ± 4.5 (56, 24.3 - 43.3)	32.5 ± 4.9 (71, 24.3 - 51.1)				
Descending thoracic aorta							
True lumen	25.4 ± 12.9 (15, 4.0 - 44.6)	21.5 ± 10.0 (56, 6.2 - 65.9)	22.3 ± 10.7 (71, 4.0 - 65.9)				
False lumen	19.2 ± 12.0 (15, 0 - 49.8)	18.2 ± 8.0 (56, 0 - 34.1)	18.4 ± 8.9 (71, 0 - 49.8)				
Total	44.6 ± 10.9 (15, 29.5 - 64.4)	39.6 ± 5.7 (56, 26.8 - 65.9)	40.7 ± 7.3 (71, 26.8 - 65.9)				
ust distal to celiac artery origin							
True lumen	19.8 ± 8.7 (14, 3.6 - 32.6)	14.3 ± 6.5 (55, 3.4 - 28.4)	15.5 ± 7.2 (69, 3.4 - 32.6)				
False lumen	10.0 ± 12.6 (14, 0 - 43.4)	14.3 ± 6.4 (55, 0 - 28.1)	13.4 ± 8.1 (69, 0 - 43.4)				
Total	29.8 ± 8.6 (14, 21.9 - 55.3)	28.6 ± 3.4 (55, 19.5 - 39.4)	28.9 ± 4.9 (69, 19.5 - 55.3)				
ust distal to SMA origin							
True lumen	19.2 ± 8.5 (14, 2.6 - 30.2)	15.0 ± 6.6 (53, 2.1 - 26.9)	15.8 ± 7.2 (67, 2.1 - 30.2)				
False lumen	7.4 ± 10.0 (14, 0 - 29.0)	12.2 ± 7.6 (53, 0 - 27.8)	11.2 ± 8.3 (67, 0 - 29.0)				
Total	26.6 ± 5.2 (14, 20.4 - 42.3)	27.1 ± 3.7 (53, 20.0 - 37.9)	27.0 ± 4.1 (67, 20.0 - 42.3)				
lust distal to right renal artery origin							
True lumen	17.4 ± 7.2 (14, 3.1 - 26.1)	14.9 ± 6.1 (52, 2.7 - 26.9)	15.4 ± 6.3 (66, 2.7 - 26.9)				
False lumen	5.7 ± 7.6 (14, 0 - 20.1)	9.7 ± 6.9 (52, 0 - 29.2)	8.9 ± 7.2 (66, 0 - 29.2)				
Total	23.2 ± 4.1 (14, 17.2 - 32.0)	24.6 ± 3.7 (52, 17.2 - 37.9)	24.3 ± 3.8 (66, 17.2 - 37.9)				
Just distal to left renal artery origin							
True lumen	17.4 ± 7.6 (14, 2.4 - 26.1)	14.5 ± 6.3 (53, 3.2 - 27.8)	15.1 ± 6.6 (67, 2.4 - 27.8)				
False lumen	5.9 ± 8.1 (14, 0 - 20.5)	9.7 ± 8.0 (53, 0 - 36.0)	8.9 ± 8.1 (67, 0 - 36.0)				
Total	23.3 ± 4.6 (14, 18.0 - 33.6)	24.2 ± 4.1 (53, 17.1 - 40.1)	24.0 ± 4.2 (67, 17.1 - 40.1)				
Abdominal aorta							
True lumen	25.0 ± 12.8 (14, 7.4 - 53.0)	16.5 ± 7.7 (48, 3.8 - 36.3)	18.4 ± 9.7 (62, 3.8 - 53.0)				
False lumen	12.3 ± 12.5 (14, 0 - 43.4)	16.1 ± 7.9 (48, 0 - 36.6)	15.3 ± 9.2 (62, 0 - 43.4)				
Total	37.3 ± 11.6 (14, 24.1 - 55.3)	32.6 ± 4.9 (48, 24.1 - 44.8)	33.6 ± 7.2 (62, 24.1 - 55.3)				

LCC: left common carotid artery; LSA: left subclavian artery; SMA: superior mesenteric artery; CIA: common iliac artery.

Location of Primary Tear

Table 9 reports the location of the primary tear as assessed by the core laboratory. As expected for a study of patients with Type B dissection, the

majority of primary tears for the total patient population occurred in the descending thoracic aorta. The distribution in primary tear location appeared to be similar for both patient populations based on core laboratory analysis.

- -----

Table 9 – Location of Primary Tear per the Core Laboratory

	Percent Patients (number/total number)					
Location	Without Dissection Stent	With Dissection Stent ^a	Total			
Aorta at LSA/in LSA	0%	1.8% (1/57)	1.4% (1/72)			
Descending thoracic aorta, distal to LSA	86.7% (13/15)	86.0% (49/57)	86.1% (62/72)			
Aorta at celiac artery/in celiac artery	0%	0%	0%			
Aorta at SMA/in SMA	0%	0%	0%			
Aorta at renal arteries/in renal arteries	0%	0%	0%			
Infrarenal abdominal aorta	0%	0%	0%			
Unknown	13.3% (2/15)	12.3% (7/57)	12.5% (9/72)			

LCC: left common carotid artery; LSA: left subclavian artery; SMA: superior mesenteric artery.

^a Patient 1130090 was unable to be assessed by the core laboratory due to inadequate imaging

Location of Proximal Extent of Dissection

Table 10 provides the distribution of the location of the proximal aspect of dissection as determined by the core laboratory. The majority of the total patient population had the proximal aspect of dissection either at or distal to the LSA, while some patients were noted by the core laboratory to have a dissection with the most proximal aspect in the ascending aorta, aortic arch (proximal to the LCC), or proximal to the LSA (distal to the LCC). Likewise, the majority of patients in both groups had the proximal aspect of the dissection either at or distal to the LSA.

Table 10 - Location of the Proximal Aspect of Dissection as Determined by the Core Laboratory

	Percent Patients (number/total number)						
Location	Without Dissection Stent	With Dissection Stent ^a	Total				
Ascending thoracic aorta	0%	3.5% (2/57)	2.8% (2/72)				
Aortic arch, proximal to LCC	20.0% (3/15)	1.8% (1/57)	5.6% (4/72)				
Proximal to LSA, distal to LCC	6.7% (1/15)	10.5% (6/57)	9.7% (7/72)				
Aorta at LSA/in LSA	20.0% (3/15)	50.9% (29/57)	44.4% (32/72)				
Descending thoracic aorta, distal to LSA	53.3% (8/15)	31.6% (18/57)	36.1% (26/72)				
Aorta at celiac artery/in celiac artery	0%	0%	0%				
Aorta at SMA/in SMA	0%	0%	0%				
Aorta at renal arteries	0%	0%	0%				
Infrarenal abdominal aorta	0%	0%	0%				
Unknown	0%	1.8% (1/57)	1.4% (1/72)				

LCC: left common carotid artery; LSA: left subclavian artery; SMA: superior mesenteric artery.

^a Patient 1130090 was unable to be assessed by the core laboratory due to inadequate imaging.

Location of Distal Extent of Dissection

Table 11 provides the distribution of the location of the distal aspect of dissection as determined by the core laboratory. The dissection often extended distally to at least the level of the celiac artery, with the majority of dissections for the total patient population terminating distal to the renal arteries, in either the abdominal aorta or common/external iliac arteries. Compared to the patients who did not receive a Dissection Stent, those patients who did receive a Dissection Stent appeared to more often have a dissection that terminated in the external iliac arteries.

Table 11 - Location of the Most Distal Aspect of Dissection as Determined by the Core Laboratory

	Percent Patients (number/total number)						
Location	Without Dissection Stent ^a	With Dissection Stent ^b	Total				
Aorta at celiac artery/in celiac artery	8.3% (1/12)	0%	1.5% (1/68)				
Aorta at SMA/in SMA*	16.7% (2/12)	3.6% (2/56)	5.9% (4/68)				
Aorta at renal arteries/in renal arteries	8.3% (1/12)	12.5% (7/56)	11.8% (8/68)				
Infrarenal abdominal aorta	25.0% (3/12)	19.6% (11/56)	20.6% (14/68)				
Common iliac arteries (right or left)	25.0% (3/12)	17.9% (10/56)	19.1% (13/68)				
External iliac arteries (right or left)	0%	28.6% (16/56)	23.5% (16/68)				
Internal iliac arteries (right or left)	0%	1.8% (1/56)	1.5% (1/68)				
Femoral arteries (right or left)	0%	0%	0%				
Unknown	16.7% (2/12)	16.1% (9/56)	16.2% (11/68)				

*SMA: superior mesenteric artery.

^a Patients 1130049, 1230003, and 1230007 were unable to be assessed by the core laboratory due to inadequate imaging.

^b Patients 1130057 and 1130090 were unable to be assessed by the core laboratory due to inadequate imaging.

Secondary Tears

Table 12 provides the distribution of the location of the identified secondary/reentry tears as determined by the core laboratory. The majority of the total patient population presented with secondary tears, often in the descending thoracic aorta as well as in the abdominal aorta and at/near the

renal arteries. While most patients in both groups had secondary tears in the descending thoracic aorta, it appeared that patients who received a Dissection Stent had a higher prevalence of secondary tears in the region of the branch vessels (renal arteries, SMA, celiac artery), abdominal aorta, and iliac arteries.

Table 12 – Location of the Secondary/Reentry Tears as Determined by the Core Laboratory^a

	Percent Patients (number/total number)				
Location	Without Dissection Stent	With Dissection Stent ^b	Total		
None	13.3% (2/15)	3.5% (2/57)	5.6% (4/72)		
Ascending thoracic aorta	0%	0%	0%		
Aortic arch, proximal to LCC*	0%	0%	0%		
Proximal to LSA, distal to LCC*	0%	0%	0%		
Aorta at LSA/in LSA	0%	0%	0%		
Descending thoracic aorta, distal to LSA	80.0% (12/15)	84.2% (48/57)	83.3% (60/72)		
Aorta at celiac artery/in celiac artery	6.7% (1/15)	28.1% (16/57)	23.6% (17/72)		
Aorta at SMA/in SMA	0% (0/15)	28.1% (16/57)	22.2% (16/72)		
Aorta at renal arteries/in renal arteries	13.3% (2/15)	43.9% (25/57)	37.5% (27/72)		
Infrarenal abdominal aorta	13.3% (2/15)	49.1% (28/57)	41.7% (30/72)		
Common iliac arteries (right or left)	0%	17.5% (10/57)	13.9% (10/72)		
External iliac arteries (right or left)	0%	3.5% (2/57)	2.8% (2/72)		
Internal iliac arteries (right or left)	0%	1.8% (1/57)	1.4% (1/72)		
Femoral arteries (right or left)	0%	0%	0%		
Unknown	6.7% (1/15)	10.5% (6/57)	9.7% (7/72)		

*LCC: left common carotid artery; SLA: left subclavian artery; SMA: superior mesenteric artery

Patients may have presented with multiple secondary/reentry tears

^b Patient 1130090 was unable to be assessed by the core laboratory due to inadequate imaging.

Procedural Information

Procedural information is summarized in **Table 13**. All procedures were performed under general anesthesia. Vascular access techniques employed during the procedure included femoral artery cutdown in 72.6% of patients, percutaneous access in 58.9% of patients, and use of a conduit in 2.7% of patients (multiple access methods were possible). A surgical cutdown appeared more common in patients without a Dissection Stent. Adjunctive techniques for spinal cord protection were performed in 39.7%, including primarily cerebrospinal fluid (CSF) drainage. The majority of patients had either partial or complete coverage of the left subclavian artery (LSA), often without a revascularization procedure.

Table 13 – Procedural Information

Item	Result n (%)
Anesthesia Method	·
General	73 (100%)
Regional	0
Local	0
Access Method ^a	
Percutaneous	43 (58.9%)
Cut-Down	53 (72.6%)
Conduit	2 (2.7%)
Adjunctive Techniques to Prevent Paraplegia	
CSF Drainage	26 (35.6%)
Neurologic/Cerebral Monitoring	2 (2.7%)
Induced Hypertension	1 (1.4%)
LSA Coverage	
Complete	28 (38.4%)
Partial	15 (20.5%)
None	30 (41.1%)
LSA Revascularization Procedure	
None	58 (79.4%)
Transposed	4 (5.5%)
Bypassed	11 (15.1%)
^a Multiple access methods may have been used in a patient	

ay I l in a pat

The mean procedure time was 154.9 ± 91.3 minutes and the mean procedural blood loss was 242.1 \pm 315.8 ml. The mean anesthesia time was 234.2 \pm 96.7 minutes. Procedure times as well as procedural blood loss appeared greater on average in patients who received a Dissection Stort of upperced grouters expected given the differences between groups in terms of number of components placed, as further described below.

Devices Placed during Index Procedure

Tables 14-16 report the number and sizes of Dissection Endovascular Grafts (nontapered and tapered) and Dissection Endovascular Stents placed at the time of the index procedure. The largest (42 mm) and smallest (22 mm) diameters, the longest (218 mm) and shortest (79 mm) lengths, and both tapered options (4 mm and 8 mm) were used among the patients enrolled in the study, supporting the clinical relevance of the available sizes. All available Dissection Stent dian eters and lengths were used.

Table 14 – Number and Sizes (Diameters and Lengths) of

Nontapered Dissection Endovascular Graft Components Implanted **During Index Procedure**

During Index Procedure				
Diameter (mm)	Length (mm)	N		
22	79	1		
	117	0		
24	79	0		
24	117	0		
26	79	1		
20	136	2		
	82	1		
28	142	4		
	202	1		
	82	1		
30	142	6		
	202	2		
	82	2		
32	142	9		
	202	5		
	79	2		
34	154	3		
	204	7		
	79	1		
36	154	9		
	204	3		
	79	0		
38	154	2		
	204	3		
	83	0		
40	164	0		
	218	1		
	83	1		
42	164	0		
	218	1		

Proximal Diameter (mm)	Distal Diameter (mm)	Length (mm)	N
	28	162	0
32	28	202	0
32	24	158	0
	24	196	0
	30	159	3
24	30	199	5
34	26	156	1
	20	194	0
	22	159	2
26	32	199	6
36		159	1
	28	199	1
	34	154	0
38		204	1
00	20	159	1
	30	199	0
	36	160	1
40	30	210	3
40	32	165	1
	52	205	1
	38	160	1
42	50	210	1
42 —	34	160	3
	54	210	2

Table 17 further describes the different main body component combinations used during the initial implant procedure, as selected at the discretion of the treating physician, for patients who did not receive a Dissection Stent and for patients who received a Dissection Stent. All patients received at least one stent graft, with nearly 80% of patients also receiving at least one Dissection Stent. Two or more Dissection Endovascular Grafts were used in approximately one-third of patients. There appeared to be differences between groups in terms of the number of components placed, where three or more components were placed in half of the patients with a Dissection Stent, whereas none of the patients in the group without a Dissection Stent received more than two components (and 40% received one component).

Table 17 - Combination of Components Placed During the Initial Implant Procedure

Main Darks Combination	Percent Patients (number/total number)		
Main Body Combination	Without Dissection Stent	With Dissection Stent	
One Dissection Endovascular Graft (only)	40.0% (6/15)	NA	
Two Dissection Endovascular Grafts (only)	60.0% (9/15)	NA	
One Dissection Endovascular Graft and one Dissection Stent	NA	44.8% (26/58)	
One Dissection Endovascular Graft and two Dissection Stents	NA	22.4% (13/58)	
One Dissection Endovascular Graft and three Dissection Stents	NA	1.7% (1/58)	
One Dissection Endovascular Graft and four Dissection Stents	NA	1.7% (1/58)	
Two Dissection Endovascular Grafts and one Dissection Stent	NA	24.1% (14/58)	
Two Dissection Endovascular Grafts and two Dissection Stents	NA	0%	
Two Dissection Endovascular Grafts and three Dissection Stents	NA	1.7% (1/58)	
Three Dissection Endovascular Grafts and one Dissection Stent	NA	3.4% (2/58)	

Table 15 – Number and Sizes (Diameters and Lengths) of Tapered Dissection Endovascular Graft Components Implanted During Index Procedure

Table 16 - Number and Sizes (Diameters and Lengths) of Dissection
Stent Components Implanted During Index Procedure

Diameter (mm)	Length (mm)	N		
	80	13		
36	120	18		
	180	27		
46	80	3		
	120	4		
	185	13		

Table 18 provides information pertaining to the location of dissection (proximal extent, primary tear, distal extent) as well as the location in which the Dissection Endovascular Graft and Dissection Stent were placed as assessed by the core laboratory according to the zone classification by Fillinger, et al.¹ Zones 2 through 4 were the most common locations for Dissection Endovascular Graft placement, while Zones 4 through 9 were the most common locations for Dissection Stent placement. Although the core laboratory noted graft placement extending into Zone 1 in 49.3%, none of the patients had coverage of the LCC, indicating only a portion of the graft (such as along the inner curvature) extended into Zone 1.

Table 18 - Dissection Stent and Dissection Endovascular Graft Coverage Relative to Extent of Dissection and Primary Tear Location According to Zone Classification Based on Core Laboratory Assessment

Zoneª		Dissection Location (pre-procedure) ^b			Device Location (at first follow-up) ^b	
		Proximal Extent	Primary Tear	Distal Extent	Dissection Endovascular Graft	Dissection Stent
	0	4.2% (3/72)	-	-	-	-
	1	6.9% (5/72)	-	-	49.3% (34/69)	-
	2	38.9% (28/72)	2.8% (2/72)	-	82.6% (57/69)	-
4 Mid-point of descending	3	37.5% (27/72)	4.2% (3/72)	-	88.4% (61/69)	
tescending thorade sorts (approx. T6)	4	5.6% (4/72)	70.8% (51/72)	1.4% (1/72)	94.2% (65/69)	61.8% (34/55)
	5	5.6% (4/72)	15.3% (11/72)	8.3% (6/72)	68.1% (47/69)	94.5% (52/55)
6	6	-	-	2.8% (2/72)	5.8% (4/69)	65.5% (36/55)
8	7	-	-	2.8% (2/72)	-	65.5% (36/55)
9	8	-	-	9.7% (7/72)	1.4% (1/69)	60.0% (33/55)
9	9	-	-	23.6% (17/72)	1.4% (1/69)	54.5% (30/55)
10 10	10	-	-	19.4% (14/72)	-	1.8% (1/55)
	11	-	-	19.4% (14/72)	-	1.8% (1/55)
"// \\\"	Unk*	1.4% (1/72)	6.8% (5/72)	11.1% (8/72)	1.4% (1/69)	-

*Unk = unknown.

a Data are reported as zones 0-11 according to the diagram in Fillinger, et al.1.

^b Dashes indicate a value of 0%

Tables 19 and 20 report additional procedures performed (including accessory device usage) during the time of the index procedure among patients with a Dissection Stent and patients without a Dissection Stent, respectively. The majority of patients with procedures before device placement underwent carotid-subclavian bypass. Transposition of the LSA, lilac artery angioplasty/stent placement, and other procedure types were also reported. Procedures after device deployment included transposition of the LSA, celiac artery stent placement, lilac artery angioplasty/stent placement, SMA

fenestration, and other procedure types, which often involved renal artery and/or SMA stent placement. Rates of additional procedures were generally comparable between the two patient populations. However, additional procedures involving the celiac artery, SMA, and/or renal arteries (i.e., fenestration, angioplasty, stent placement) appeared to be more common in patients who received a Dissection Stent, which is consistent with these patients more often presenting initially for treatment of malperfusion as compared to patients who did not receive a Dissection Stent, who often presented for treatment of rupture.

Table 19 - Additional Procedures Performed and Accessory Device Usage During the Index Procedure in Patients With a Dissection Stent

Procedure	Percent Patients (number/total number)			
Procedure	Before Device Deployment	After Device Deployment		
Carotid-subclavian bypass	15.5% (9/58)	0% (0/58)		
LSA transposition	5.2% (3/58)	1.7% (1/58)		
Celiac artery stent	0% (0/58)	1.7% (1/58)		
Iliac artery angioplasty	1.7% (1/58)	1.7% (1/58)		
Iliac artery stent or stent graft	1.7% (1/58)	8.6% (5/58)		
SMA fenestration	0% (0/58)	1.7% (1/58)		
Other	6.9% (4/58)ª	22.4% (13/58) ^b		

LCC: left common carotid artery; LSA: left subclavian artery; SMA: superior mesenteric artery.

a Carotid-to-axillary bypass (n = 1); transesophageal echo (n = 1); exploratory laparotomy (n = 1); Amplatzer plug placement to embolize the LSA (n = 1).

^b SMA stent placement (n = 1); esophagogastoduodenoscopy and esophagectomy (n = 1); renal artery stent placement (n = 2); renal artery stent placement, common iliac artery thrombectomy, and femoral patch angioplasty (n = 1); renal artery stent placement, SMA stent placement, and iliofemoral bypass (n = 1); dialysis catheter insertion (n = 1); common iliac artery endarterectomy and patching (n = 1); chest tube placement (n = 1); transesophageal echo (n = 2); fasciotomy (n = 1); renal artery stent placement and femoral artery endarterectomy (n = 1); transesophageal echo (n = 2); fasciotomy (n = 1); renal artery stent placement and femoral artery endarterectomy (n = 1).

Table 20 - Additional Procedures Performed and Accessory Device Usage During the Index Procedure in Patients Without a Dissection Stent

Procedure	Percent Patients (number/total number)			
	Before Device Deployment	After Device Deployment		
Carotid-subclavian bypass	6.7% (1/15)	0% (0/15)		
SMA fenestration	0% (0/15)	6.7% (1/15)		
Vessel closure device	0% (0/15)	13.3% (2/15)		
Other	0% (0/15)	13.3% (2/15) ^a		

LCC: left common carotid artery; LSA: left subclavian artery; SMA: superior mesenteric artery.

 $^{\rm a}$ Femoral-femoral bypass (n = 1); ballooning of true lumen of aorta in abdominal region (n = 1).

The clinical utility results are presented in **Table 21**. The measures appeared to be comparable or generally higher in patients who received a Dissection Stent.

Table 21 – Clinical Utility Measures

Variable	Mean ± SD (N, range)				
Variable	Without Dissection Stent	With Dissection Stent	Total		
Days in ICU	3.2 ± 2.3 (14, 1 - 10)	7.0 ± 7.3 (57, 0 - 30)	6.3 ± 6.7 (71, 0 - 30)		
Days to discharge	12.5 ± 11.0 (15, 2 - 32)	11.6 ± 9.8 (58, 1 - 47)	11.8 ± 10.0 (73, 1 - 47)		
Days to first bowel movement	4.1 ± 3.2 (15, 0 - 12)	4.7 ± 2.9 (48, 0 - 12)	4.6 ± 2.9 (63, 0 - 12)		
Days to resumption of oral fluid intake	1.1 ± 1.0 (15, 0 - 3)	3.3 ± 6.1 (50, 0 - 35)	2.8 ± 5.5 (65, 0 - 35)		
Days to resumption of regular diet	3.7 ± 4.1 (15, 0 - 16)	5.5 ± 7.3 (47, 0 - 35)	5.0 ± 6.7 (62, 0 - 35)		
Mechanical ventilation (days)	0.5 ± 0.6 (15, 0 - 2)	2.0 ± 4.8 (58, 0 - 28)	1.7 ± 4.3 (73, 0 - 28)		
Procedural intubation (hours)	7.7 ± 8.5 (15, 1.5 - 28)	25.8 ± 64.3 (56, 0 - 375)	22.0 ± 57.6 (71, 0 - 375)		
Number of blood transfusions	1 (1, NA)	1 ± 0 (11, 1 - 1)	1 ± 0 (12, 1 - 1)		

6.4 Safety and Effectiveness Results (Through 12 Months)

As explained above, the core laboratory-identified patients with dissection of the aorta proximal to the left subclavian artery, a length <20 mm between the LCC and proximal extent of dissection, or with fixation site diameters >38 mm were not excluded from the hypotheses-driven and secondary endpoints analyses, because enrollment in the study was determined by site evaluation. In addition, inclusion of these patients would not favorably bias the study results. The primary analysis of safety and effectiveness was based on the 67 evaluable patients at the 30-day time point, excluding the 6 patients without confirmed absence of bowel necrosis at the time of enrollment.

Table 22 presents the results of hypothesis testing for the primary endpoint for the Zenith Dissection Endovascular System. The 30-day survival rate was 95.5%, which met the performance goal of 79.4% (p < 0.001).

Table 22 - Results From Primary Effectiveness Hypothesis Testing (30-Day Survival)

Performance Goal	30-day Survival Rate	95% Confidence Interval	P-value	Performance Goal Met
79.4%	95.5% (64/67)	87%, 99%ª	<0.001	Yes

^a 95% confidence interval was computed using the Exact method.

There were three patients who died within 30 days, the details of which are provided in **Table 23**. Each death within 30 days occurred in a patient who received a Dissection Stent.

Table 23 – Patient Deaths Within 30 Days

Patient Number	Days Post-procedure	Cause of Death	CEC Adjudication
1130012*	21	Aortic rupture	Unable to be adjudicated
1130036*	1	Aortic dissection with resultant respiratory failure, cardiac arrest	Not related: related to presenting aortic dissection
1130060	5	Brain dead due to stroke	Procedure-related

Patient had a length <20 mm from LCC to proximal extent of dissection, a dissection that extended proximal ti and a total aortic diameter >38 mm at level of LCC/LSA at pre-procedure based on core laboratory analysis.

Two of the six patients excluded from assessment of the primary effectiveness hypothesis also died within 30 days.

The 30-day freedom from MAE rate was 71.6%, which met the performance goal of 51.2% (p < 0.001). The key safety outcomes for this study are presented below in **Tables 24** and **25**.

Adverse effects are reported in Table 27.

6.4.1 Additional Safety Results Protocol Defined MAEs

The additional hypothesis-driven analysis of safety (30-day freedom from MAEs) was based on the results from 67 patients. Data from 73 patients are presented for all other safety endpoints.

Table 24 - Results From Primary Safety Hypothesis Testing (30-Day Freedom from MAEs)

Performance Goal	30-day Freedom from MAE Rate	95% Confidence Interval	P-value	Performance Goal Met
51.2%	71.6% (48/67)	59%, 82%ª	<0.001	Yes
a 95% confidence interval was computed	d using the Exact method.			

• 95% confidence interval was computed using the exact method.

There were 19 patients who experienced MAEs within 30 days (17 patients who received a Dissection Stent and 2 patients without a Dissection Stent),

as summarized below in **Table 25**. None of the six patients excluded from assessment of the primary safety hypothesis had a MAE within 30 days.

Table 25 – Patients Experiencing MAEs Within 30 Days

Major Adverse Event	Patients without Dissection Stent	Patients with Dissection Stent	Total	SVS Acute Patients
Bowel ischemia	0%	0%	0%	3.5% (3/85)
MI*	0%	1.9% (1/52) ^a	1.5% (1/67)	1.2% (1/85)
Paraparesis/Paraplegia	6.7% (1/15)	5.8% (3/52)	6.0% (4/67)	9.4% (8/85)
Prolonged (>72 hours) ventilatory support	0%	19.2% (10/52) ^b	14.9% (10/67)	2.4% (2/85)
Renal failure requiring dialysis	6.7% (1/15)	7.7% (4/52) ^c	7.5% (5/67)	9.4% (8/85)
Stroke	0%	9.6% (5/52) ^d	7.5% (5/67)	9.4% (8/85)

*MI: myocardial infarction.

^a Patient had a length <20 mm from LCC to proximal extent of dissection and a dissection that extended proximal to the LSA at pre-procedure based on core laboratory analysis.

^b Five patients had a length <20 mm from LCC to proximal extent of dissection, a dissection that extended proximal to the LSA and/or a total aortic diameter >38 mm at the level of the

LCC/LSA at pre-procedure based on core laboratory analysis. Four patients had a length <20 mm from LCC to proximal extent of dissection, a dissection that extended proximal to the LSA, and/or a total aortic diameter >38 mm at the level of the LCC/LSA at pre-procedure based on core laboratory analysis.

^d Two patients had a length <20 mm from LCC to proximal extent of dissection and/or a dissection that extended proximal to the LSA at pre-procedure based on core laboratory analysis

Of the MAEs that were assessed, stroke and paraplegia/paraparesis are considered the most serious. While the risk of either one occurring following endovascular repair of Type B aortic dissection is well known, further investigation into the possible circumstances was warranted.

Five patients experienced stroke within 30 days. Each stroke occurred in a patient who received a Dissection Stent and was adjudicated by the CEC to be procedure-related; no stroke was adjudicated as related to the device. The LSA was covered in three of the five patients with stroke, two of which had undergone revascularization. Two patients appear to have recovered based on normal neurological exams reported at subsequent follow-up. The other three, each without recovery, were notable for potential contributing factors such as preexisting Type A dissection, presence of calcification and thrombus in the proximal seal zone at pre-procedure, and induced hypotension during the procedure.

Four patients experienced paraplegia/paraparesis within 30 days, two recovered and two were unresolved. The two patients without resolution of symptoms had both received spinal cord protection (CSF drainage) at the time of procedure. The pre-procedure imaging for both patients was notable for spinal arteries perfused by the true and false lumens, and on follow-up imaging, both had false lumen thrombosis that extended beyond the level of spinal cord injury, suggesting the deficits in both may have resulted from decreased perfusion of the spinal arteries secondary to false lumen thrombosis.

Not Protocol Defined MAEs

While not protocol-defined as MAEs, additional (vascular) events of interest that were reported by the sites within 30 days included rupture in 1.4% (1/52 with a Dissection Stent, 0/15 without a Dissection Stent and retrograde dissection in 1.4% (1/52 with a Dissection Stent, 0/15 without a Dissection Stent). While there were additional reports of rupture (n = 1) and retrograde dissection in (n = 3) between 31-365 days, each occurred in a patient with preexisting Type A dissection (i.e., none of the retrograde dissections were progression of Type B dissection to Type A dissection, as also noted in **Table 27**, Morbidity by Category and Type in All Patients), underscoring the importance of an adequate proximal landing zone in non-dissected aorta.

All-Cause Mortality

With regards to the entire study population (n = 73), deaths between 0-30 days, 31-180 days, and 181-365 days occurred in 6.8% (1 related, 3 unrelated, 1 unable to be adjudicated), 7.5% (1 related, 3 unrelated, 1 unable to be adjudicated) by the CEC) and 6.7% (2 unrelated, 2 unable to be adjudicated by the CEC), respectively, and included patients from both groups (11 with a Dissection Stent, 3 without a Dissection Stent). Death rates between 0-30 days and 31-365 days were reported in the SVS dataset at 10.6% and 15.8%, respectively. **Table 26** provides the details for all patients who died within 365 days.

Table 26 - Patient Deaths Within 365 Days

Patient Number	Days After Procedure	Cause of Death	CEC Adjudication
1130001ª	57	Type A aortic dissection with rupture	Not related: related to preexisting Type A dissection prior to device deployment
1130012ª	21	Aortic rupture	Unable to be adjudicated
1130015ª	1	Ischemic bowel	Not related: related to a preexisting condition
1130022ª	3	Multiple organ failure	Not related: related to celiac artery and SMA occlusions prior to Dissection Stent placement
1130036ª	1	Aortic dissection with resultant respiratory failure, cardiac arrest	Not related: related to presenting aortic dissection
1130039ª	220	Multiple organ failure	Not related: patient did not meet inclusion criteria
1130049	170	Angiosarcoma, cancer	Not related: related to other condition
1130060ª	5	Brain dead due to stroke	Procedure-related
1130065	66	Unknown	Procedure-related: post-operatively the patient was ventilated and had a stroke; however, the terminal event is not clear
1130067	96	Unknown, found dead at home	Unable to be adjudicated
1130084ª	330	Atherosclerotic cardiovascular disease	Unable to be adjudicated
1130087ª	306	Unknown	Unable to be adjudicated
1230007	240	Respiratory failure	Not related: related to pneumonia with preexisting lung cancer and COPD
1230009	177	Ischemic heart disease	Not related: related to preexisting condition

Note: Patient numbers that are italicized indicate those who did not have confirmed absence of bowel necrosis at the time of enrollment and were therefore excluded from hypothesis testing. * Patient had a length <20 mm from LCC to proximal extent of dissection, a dissection that extended proximal to the LSA, and/or a total aortic diameter >38 mm at the level of the LCC/LSA at pre-procedure based on core laboratory analysis.

Adverse Effects that Occurred in the PMA Clinical Study

 Table 27 reports the frequency of all adverse events according to organ system category and event type in the overall patient population through 12 months.

 The occurrence of adverse events was not unexpected given the extent of

Table 27 – Morbidity by Category and Type in All Patients

comorbid medical conditions and disease among the total patient population as well as the prevalence of early and late events in similar categories for patients undergoing endovascular treatment for acute, complicated Type B aortic dissection, as reported in the SVS dataset.

Category		Per	cent Patients (number/total num	per)
	Туре	0-30 Days	31-180 Days	181-365 Days
Access site/vessel		9.6% (7/73)	3.0% (2/67)	0% (0/60)
	Dehiscence	0% (0/73)	0% (0/67)	0% (0/60)
	Hematoma	5.5% (4/73)	0% (0/67)	0% (0/60)
	Hernia	0% (0/73)	0% (0/67)	0% (0/60)
	Infection	0% (0/73)	1.5% (1/67)	0% (0/60)
	Pseudoaneurysm	2.7% (2/73)	0% (0/67)	0% (0/60)
	Seroma	2.7% (2/73)	1.5% (1/67)	0% (0/60)
Cardiovascular		13.7% (10/73)	4.5% (3/67)	1.7% (1/60)
	Cardiac arrhythmia	6.8% (5/73)	1.5% (1/67)	1.7% (1/60)
	Cardiac ischemia	1.4% (1/73)	1.5% (1/67)	0% (0/60)
	Congestive heart failure	0% (0/73)	1.5% (1/67)	0% (0/60)
	Myocardial infarction	1.4% (1/73)	0% (0/67)	0% (0/60)
	Refractory hypertension	4.1% (3/73)	0% (0/67)	0% (0/60)
Cerebrovascular/neurologic		11.0% (8/73)	0% (0/67)	1.7% (1/60)
5	Paraplegia	2.7% (2/73)	0% (0/67)	0% (0/60)
	Paraparesis	4.1% (3/73)	0% (0/67)	0% (0/60)
	Transient ischemic attack	0% (0/73)	0% (0/67)	0% (0/60)
	Stroke	6.8% (5/73)	0% (0/67)	1.7% (1/60)
Gastrointestinal		12.3% (9/73)	0% (0/67)	3.3% (2/60)
	Bleeding	1.4% (1/73)	0% (0/67)	0% (0/60)
	Bowel ischemia	1.4% (1/73)	0% (0/67)	3.3% (2/60)
	Infection	4.1% (3/73)	0% (0/67)	0% (0/60)
	Bowel obstruction	0% (0/73)	0% (0/67)	0% (0/60)
	Paralytic ileus > 4 days	5.5% (4/73)	0% (0/67)	0% (0/60)
Pulmonary		21.9% (16/73)	3.0% (2/67)	1.7% (1/60)
	COPD	0% (0/73)	3.0% (2/67)	1.7% (1/60)
	Hemothorax	1.4% (1/73)	0% (0/67)	0% (0/60)
	Pleural effusion	16.4% (12/73)	0% (0/67)	0% (0/60)
	Pneumonia	2.7% (2/73)	0% (0/67)	0% (0/60)
	Pneumothorax	0% (0/73)	0% (0/67)	0% (0/60)
	Pulmonary edema	1.4% (1/73)	0% (0/67)	0% (0/60)
	Pulmonary embolism	1.4% (1/73)	0% (0/67)	0% (0/60)
Renal/urologic		17.8% (13/73)	6.0% (4/67)	5.0% (3/60)
	Renal failure ^a	8.2% (6/73)	1.5% (1/67)	1.7% (1/60)
	Urinary tract infection ^b	8.2% (6/73)	4.5% (3/67)	3.3% (2/60)
	Serum creatinine rise ^c	2.7% (2/73)	0% (0/67)	1.7% (1/60)
Vascular		8.2% (6/73)	4.5% (3/67)	3.3% (2/60)
	Aortic aneurysm	1.4% (1/73)	1.5% (1/67)	1.7% (1/60)
	Aortic rupture	1.4% (1/73)	1.5% (1/67)	0% (0/60)
	Aortobronchial fistula	0% (0/73)	0% (0/67)	0% (0/60)
	Aortoesophageal fistula	0% (0/73)	0% (0/67)	0% (0/60)
	Aortoenteric fistula	0% (0/73)	0% (0/67)	0% (0/60)
	Arterial thrombosis	0% (0/73)	0% (0/67)	0% (0/60)
	Coagulopathy	0% (0/73)	0% (0/67)	0% (0/60)
	Deep vein thrombosis		0% (0/67)	0% (0/60)
		2.7% (2/73)		
	Distal embolization ^d	0% (0/73)	0% (0/67)	0% (0/60)
	Hematoma	0% (0/73)	0% (0/67)	0% (0/60)
	Pseudoaneurysm ^e Retrograde dissection ^f	1.4% (1/73) 1.4% (1/73)	0% (0/67) 3.0% (2/67)	0% (0/60) 1.7% (1/60)

^a With or without dialysis.

^b Requiring antibiotic treatment

 $^{\rm c}$ >30% above baseline resulting in a persistent value >2.0 mg/dL.

^d With tissue loss.

^e Requiring intervention

f Includes retrograde progression of pre-existing Type A dissection in 3 and new Type A dissection in 1; none were considered retrograde progression of Type B dissection to Type A dissection. 9 Miscellaneous morbidity category comprises the following pressectified events: hypersensitivity/allergic reaction, multi-organ failure, sensis, and other

6.4.2 Additional Effectiveness Results

Additional effectiveness outcomes are presented in Tables 28 to 62, as follows.

Aortic Diameters (Total Aortic, True Lumen, False Lumen) at Follow The maximum aortic diameters just distal to the celiac artery, just distal to the SMA, just distal to the right renal artery, just distal to the left renal artery, within the Dissection Endovascular Graft, and distal to the treated segment (i.e., most distal stent graft or Dissection Stent, and within dissected aorta) were measured by the core laboratory at each time point for all patients. Compared to pre-procedure, the true lumen diameters trended larger throughout the visceral aortic segment at post-procedure. From post-procedure through 12 months, there appeared an increase (>5 mm) in mean true lumen diameter and a decrease (>5 mm) in mean false lumen diameter within the stent graft. Distal to the treated segment, there appeared to be an increase (>5 mm) in the mean total aortic diameter, with no change (\leq 5 mm) in the true and false lumen diameters. Diameters measured at the specified locations by the core laboratory at each time point for the patients without a Dissection Stent and patients with a Dissection Steric, respectively. Compared to pre-procedure, the true lumen diameter trended smaller at the level of the SMA and both renal arteries at post-procedure in the patients without a Dissection Stent, whereas the true lumen diameter trended larger throughout the visceral aortic segment at post-procedure in the patients with a Dissection Stent. In the stent graft region, there was an increase (>5 mm) in average true lumen diameter, with no change (<5 mm) in the average false lung or transaortic diameters for the patients without a Dissections Stent, compared to an increase (>5 mm) in average true lumen diameter and a decrease (>5 mm) in the average false lumen diameter, with no change (≤ 5 mm) in total aortic diameter for patients with a Dissection Stent. In the Dissection Stent region, there was no change (≤ 5 mm) in the series in the Discretion between gravity and the many series of the ser im) diameter for patients without a Dissection Stent, compared to no change (\leq 5 mm) in the total, true, and false lumen diameters from post-procedure through 12 months for patients with a Dissection Stent. Given these data, it appears that the Dissection Graft results in favorable remodeling within the region adjacent to the Dissection Endovascular Graft, with the Dissection Stent additionally providing for further stabilization of aortic diameters distal to the stent graft

Change in Transaortic Diameter

Tables 28, 29, and 30 report the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (>5 mm) in largest size in the transaortic diameter within the stent graft region (depicted in Fig. 17) for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively, at each time point analyzed. Transaortic diameter growth (>5 mm) in the stent graft region was observed in 14.9% at 12 months (6/37 with a Dissection Stent, 1/10 without a Dissection Stent), including two with a net increase (>5 mm) in false lumen diameter (both in the setting of Proximal Type I entry flow), whereas the remaining five patients had either no change (≤5 mm) or a net decrease (>5 mm) in false lumen diameter.

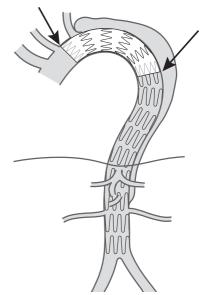


Figure 17. Diagram of the Zenith Dissection Endovascular System depicting stent graft region (between the arrows).

Table 28 – Change in Transaortic Diameter Within the Stent Graft for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (nun	nber/total number)
	6-month	12-month
Increase	25.0% (3/12) ^{a,b,c}	10.0% (1/10) ^a
Decrease	16.7% (2/12)	20.0% (2/10)
No change	58.3% (7/12)	70.0% (7/10)

Note: Footnotes provide the changes in true and false lumen diameters as of 12-month follow-up.

^a Patient 1130081: True lumen: -2.7 mm, False Lumen: +12.8 mm. Patient has a Type I proximal entry-flow, secondary tear in the descending thoracic aorta, and collateral flow from intercostal and paraspinal arteries. Patient had a length <20 mm from LCC to proximal extent of dissection and a dissection that extended proximal to the LSA at pre-procedure based on core laboratory analysis.

^b Patient 1230007: True lumen: +7.8 mm, False Lumen: -2.0 mm. ^c Patient 1230010: True lumen: +12.0 mm, False Lumen: -8.4 mm

Table 29 – Change in Transaortic Diameter Within the Stent Graft for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)		
	6-month	12-month	
Increase	16.3% (7/43) ^{a,b,c,d,e,f,g}	16.2% (6/37) ^{b,c,d,f,g,h}	
Decrease	20.9% (9/43)	27.0% (10/37)	
No change	62.8% (27/43)	56.8% (21/37)	

^a Patient 1130017: True lumen: -0.6 mm, False Lumen: +8.3 mm. The true lumen has expanded and the false lumen has decreased. The thoracic false lumen is completely thrombosed.

^b Patient 1130074: True lumen: +11.6 mm, False Lumen: -3.7 mm.

^c Patient 1130006: True lumen: +5.7 mm, False Lumen: -0.5 mm.

^d Patient 1130044: True lumen: -1.2 mm, False Lumen: +7.6 mm. Patient has a Type I proximal entry-flow. Patient had a length <20 mm from LCC to proximal extent of dissection and a dissection that extended proximal to the LSA at pre-procedure based on core laboratory analysis.

^e Patient 1130057: True lumen: -2.6 mm, False Lumen: +6.9 mm. Patient has collateral flow from the paraspinal arteries.

^f Patient 1130037: True lumen: +19.5 mm, False Lumen: -7.0 mm.

9 Patient 1130052: True lumen: +24.3 mm, False Lumen: -17.9 mm.

^h Patient 1130050: True lumen: +1.2 mm, False Lumen: +4.5 mm. Patient has collateral flow from the spinal arteries.

Table 30 – Change in Transaortic Diameter Within the Stent Graft for All Patients Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)	
Status	6-month	12-month
Increase	18.2% (10/55)	14.9% (7/47)
Decrease	20.0% (11/55)	25.5% (12/47)
No change	61.8% (34/55)	59.6% (28/47)

Table 31 reports the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (s5 mm) in largest size in the transaortic diameter within the Dissection Stent region (depicted in Fig. 18). Transaortic diameter growth (>5 mm) in the Dissection Stent region was observed in 38.5% at 12 months, including six with a net increase (>5 mm) in false lumen diameter (each in the setting of false lumen perfusion from secondary tears and patent collateral vessels), whereas the remaining nine patients had no change (<5 mm) in false lumen diameter.

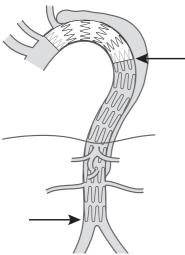


Figure 18. Diagram of Zenith Dissection Endovascular System depicting Dissection Stent region (between the arrows).

Table 31 – Change in Transaortic Diameter Within the Dissection Stent Region Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)		
Status	6-month	12-month	
Increase	20.5% (9/44) ^{a-i}	38.5% (15/39) ^{d-r}	
Decrease	4.5% (2/44)	5.1% (2/39)	
No change	75.0% (33/44)	56.4% (22/39)	

Note: Footnotes provide the changes in true and false lumen diameters as of 12-month follow-up.

a Patient 1130020: True lumen: +3.6 mm, False Lumen: -3.8 mm.

^b Patient 11 30007: True lumen: +2.6 mm, False Lumen: +0.9 mm. At 6 months, growth was potentially due to a secondary tear in the descending thoracic aorta. At 12 months, the true lumen had expanded and the thoracic false lumen was completely thrombosed. Patient 11 30017: True lumen: -0.6 mm, False Lumen: +10.5 mm. Patient has a secondary tear

a the right renal artery and collateral flow from the lumbar arteries. ^d Patient 1130035: True lumen: +2.4 mm, False Lumen: +5.0 mm. Patient has a completely

from bosed thoracic false lumen, but a secondary tear at the right renal artery and collateral flow from the paraspinal and lumbar arteries.

* Patient 1130038: True lumen: +4.0 mm, False Lumen: +4.5 mm. Patient has a completely thrombosed thoracic false lumen, but a secondary tear at the infrarenal aorta and collateral flow from the lumbar arteries.

^f Patient 1130085: True lumen: -1.9 mm, False Lumen: 14.3 mm. Patient has secondary tears in the descending thoracic and infrarenal aorta and collateral flow from the paraspinal and lumbar arteries.

9 Patient 1130074: True lumen: +6.0 mm, False Lumen: +8.1 mm. Patient has a secondary tear in the infrarenal aorta and collateral flow from the paraspinal and lumbar arteries.

^h Patient 1130086: True lumen: +7.4 mm, False Lumen: +4.0 mm. Patient has secondary tears in the descending thoracic aorta and at the SMA as well as collateral flow from the paraspinal and lumbar arteries.

¹ Patient 1130037: True lumen: +3.8 mm, False Lumen: +2.0 mm. Patient has a completely thrombosed thoracic false lumen, but has a secondary tear at the right renal artery and collateral flow from the lumbar arteries.

I Patient 1130006: True lumen: -1.8 mm, False Lumen: +9.2 mm. Patient has a Type I proximal entry-flow and collateral flow from the lumbar arteries. Patient had a length <20 mm from LCC to proximal extent of dissection, a dissection that extended proximal to the LSA, and an aortic diameter >38 mm at the level of the LCC/LSA at pre-procedure based on core laboratory analysis.

A Partent 113043. True lumen: +1.0 mm, False Lumen: +4.5 mm. Patient has a completely thrombosed thoracic false lumen, but has a secondary tear at the infrarenal aorta and celiac artery and collateral flow from the lumbar arteries.

¹Patient 1130064: True lumen: -0.9 mm, False Lumen: +6.0 mm. Patient has secondary tears in the descending thoracic and infrarenal aorta and collateral flow from the paraspinal and lumbar arteries.

^m Patient 1130069: True lumen: +7.6 mm, False Lumen: +2.2 mm.

ⁿ Patient 1130002: True lumen: +1.0 mm, False Lumen: +4.9 mm. Patient has a completely thrombosed thoracic false lumen, but has secondary tears at the celiac artery and SMA and collateral flow from the lumbar arteries.

 Patient 1130057: True lumen: +2.8 mm, False Lumen: +4.4 mm. Patient has a partially thrombosed abdominal false lumen, but has collateral flow from the paraspinal artery.
 P Atient 1130023: True lumen: -1.6 mm, False Lumen: +10.2 mm. Patient has an unknown entry-flow, a secondary tear at the SMA, and collateral flow from the paraspinal and lumbar arteries.

^q Patient 1130070: True lumen: -3.5 mm, False Lumen: +8.8 mm. Patient has a secondary tear at the left renal artery and collateral flow from the paraspinal and lumbar arteries.
^r Patient 1130058: True lumen: +2.2 mm, False Lumen: +3.0 mm. Patient has a completely thrombosed thoracic false lumen, but has secondary tears at the right renal and celiac arteries and collateral flow from the lumbar arteries.

Tables 32, 33, and 34 report the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (\leq 5 mm) in largest size in the transaortic diameter distal to the treated segment for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively, at each time point analyzed. As with the other tables reporting a change in size, the denominators reflect the number of patients with a baseline exam who also had adequate imaging extending to the level of interest, which in this case was beyond the level of the treated segment. Transaortic diameter growth (>5 mm) distal to the treated segment was observed in 40.7% at 12 months (8 with a Dissection Stent, 3 without a Dissection Stent), including seven with a net increase (>5 mm) in false lumen diameter (each in the setting of false lumen perfusion from secondary tears and patent collateral vessels), one with a net decrease (>5 mm) in false lumen diameter.

Table 32 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (nu	mber/total number)
Status	6-month	12-month
Increase	16.7% (1/6)ª	60.0% (3/5) ^{a-c}
Decrease	0%	0%
No change	83.3% (5/6)	40.0% (2/5)

Note: Footnotes provide the changes in true and false lumen diameters as of 12-month follow-up.

^a Patient 1230010: True lumen: +1.1 mm, False Lumen: +5.7 mm. Patient has secondary tears at the infrarenal aorta and at the celiac artery and collateral flow from the intercostal, paraspinal, and lumbar arteries.

paraspinal, and united at teres.
b Patient 1130027: True lumen: -0.6 mm, False Lumen: +6.4 mm. Patient has collateral flow from the intercostal arteries.

^c Patient 1130081: True lumen: -3.0 mm, False Lumen: +9.7 mm. Patient has a Type I proximal entry-flow, a secondary tear in the descending thoracic aorta, and collateral flow from the intercostal and paraspinal arteries. Patient had a length <20 mm from LCC to proximal extent of dissection and a dissection that extended proximal to the LSA at pre-procedure based on core laboratory analysis.

Table 33 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (nu	mber/total number)
	6-month	12-month
Increase	13.0% (3/23) ^{a-c}	36.4% (8/22) ^{a-h}
Decrease	0%	0%
No change	87.0% (20/23)	63.6% (14/22)

Note: Footnotes provide the changes in true and false lumen diameters as of 12-month follow-up.

^a Patient 1130076: True lumen: +7.3 mm, False Lumen: +1.9 mm. Patient has a partially thrombosed thoracic false lumen, but has a secondary tear at the left renal artery and collateral flow from the lumbar arteries.

^b Patient 1130037: True lumen: +9.3 mm, False Lumen: +10.8 mm. Patient has a completely thrombosed thoracic false lumen, but has a secondary tear at the right renal artery and collateral flow from the lumbar arteries.

^c Patient 1130052: True lumen: +0.4 mm, False Lumen: +5.0 mm. Patient has secondary tears in the infrarenal aorta and at the celiac artery and collateral flow from the lumbar arteries. ^d Patient 1130058: True lumen: +0.3 mm. False Lumen: +5.1 mm. Patient has secondary tears

at the right renal and celiac arteries and collateral flow from the lumbar arteries. • Patient 1130038: True lumen: +3.7 mm, False Lumen: +1.8 mm. Patient has a completely

thrombosed thoracic false lumen, but has a secondary tear in the infrarenal aorta and collateral flow from the lumbar arteries.

^f Patient 1130085: True lumen: +0.9 mm, False Lumen: +13.2 mm. Patient has secondary tears in the descending thoracic and infrarenal aorta and collateral flow from the paraspinal and collateral arteries.

9 Patient 1130043: True lumen: -2.4 mm, False Lumen: +11.1 mm. Patient has a completely thrombosed thoracic false lumen, but has secondary tears in the infrarenal aorta and at the celiac artery and collateral flow from the lumbar arteries.

h Patient 1130089: True lumen: +13.0 mm, False Lumen: -7.5 mm

Table 34 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for All Patients Based on Results from Core Laboratory Analysis

Status	Percent Patients (nu	mber/total number)
Status	6-month	12-month
Increase	13.8% (4/29)	40.7% (11/27)
Decrease	0%	0%
No change	86.2% (25/29)	59.3% (16/27)

False Lumen Perfusion

Tables 35, 36, and 37 detail the sources of flow in the thoracic false lumen in patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. It should be noted that per the definitions in the study protocol, Types I through IV are intended to describe the source(s) for flow into the false lumen via the primary entry tear, and therefore speaks to the effectiveness of the endovascular graft component in sealing the primary entry tear (analogous to the endoleak types for aneurysm repair – i.e., Type I = proximal and/or distal seal; Type II = vessels covered by graft; Type III = graft defect/hole or overlap; Type IV = graft porosity). However, recognizing the primary entry tear is not the only source for false lumen perfusion, it was necessary to further describe sources for false lumen flow not specifically associated with the effectiveness of the stent graft to seal the primary entry tear. Therefore, the core laboratory also noted any incidences of flow directly into the false lumen flow during follow-up were through secondary tears or collateral vessels, the coverage/occlusion of which were at physician discretion. Seven cases of Type I proximal entry flow into the thoracic false lumen were observed through 12 months. However, each patient had evidence of an inadequate proximal landing zone (i.e., aortic diameter >38 mm and/or length of non-dissected aorta <20 mm) and often times also graft undersizing. Overall, the proximal Type I entry-flow rate was 6.4% at 12 months (2 with a Dissection Stent, 1 without a Dissection Stent).

Table 35 – Entry-Flow in the Thoracic Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory analysis

Source	Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month	
Multiple	14.3% (1/7)	25.0% (3/12)	10.0% (1/10)	11.1% (1/9)	
Type I proximal	0%	8.3% (1/12) ^a	10.0% (1/10) ^b	11.1% (1/9) ^b	
Type I distal	0%	0%	0%	0%	
Туре II	0%	0%	0%	0%	
Type III	0%	0%	0%	0%	
Type IV	0%	0%	0%	0%	
Type unknown	0%	0%	0%	0%	
Collateral	57.1% (4/7)	41.7% (5/12)	40.0% (4/10)	44.4% (4/9)	
Secondary tear	14.3% (1/7)	33.3% (4/12)	10.0% (1/10)	11.1% (1/9)	
Total patients	57.1% (4/7)	50.0% (6/12)	50.0% (5/10)	44.4% (4/9)	

a Patient 1130079 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient was treated with ancillary devices to mitigate the entry-flow. The patient also presented with preexisting Type A dissection according to CEC adjudication.

^b Patient 1130081 had a Type I proximal entry-flow first noted at 54 days post-procedure (unscheduled visit) in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. This entry-flow has persisted through 12 months. No secondary interventions have been performed at this time to treat this entry-flow.

Table 36 – Entry-Flow in the Thoracic Aorta for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Source		Percent Patients (number/total number)			
Source	Post-procedure	1-month	6-month	12-month	
Multiple	35.7% (10/28)	16.2% (6/37)	26.8% (11/41)	15.8% (6/38)	
Type I proximal	3.6% (1/28) ^a	8.1% (3/37) ^{b-d}	4.9% (2/41) ^{a,c}	5.3% (2/38) ^{c,e}	
Type I distal	0%	0%	0%	0%	
Type II	0%	0%	0%	0%	
Type III	0%	0%	0%	0%	
Type IV	0%	0%	0%	0%	
Type unknown	0%	2.7% (1/37)	2.4% (1/41)	2.6% (1/38)	
Collateral	57.1% (16/28)	43.2% (16/37)	41.5% (17/41)	36.8% (14/38)	
Secondary tear	39.3% (11/28)	27.0% (10/37)	34.1% (14/41)	18.4% (7/38)	
Total patients	64.3% (18/28)	62.2% (23/37)	51.2% (21/41)	47.4% (18/38)	

^a Patient 1130087 had a Type I proximal entry-flow noted at post-procedure and at 6 months in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. The patient died 306 days post-procedure (CEC unable to adjudicate) with no secondary interventions performed to treat this entry-flow.

^b Patient 1130025 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The entry-flow was completely resolved at 6 months.

^c Patient 1130006 had a Type I proximal entry-flow that was treated with surgical repair in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient underwent a surgical repair involving the ascending aorta and arch 153 days post-procedure. The Type I proximal entry-flow has persisted through 2years.

^d Patient 1130082 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. No secondary interventions have been performed at this time to treat this entry-flow.

^e Patient 1130044 had a Type I proximal entry-flow noted at 12 months in the likely setting of graft undersizing as well as an inadequate proximal anding zone (length) relative to the location of graft placement according to measurements by the core laboratory. The Type I proximal entry-flow has persisted through 2 years. No secondary interventions have been performed at this time to treat this entry flow.

Table 37 – Entry-Flow in the Thoracic Aorta for all Patients Based on Results from Core Laboratory Analysis

Source		Percent Patients (nu	mber/total number)	
	Post-procedure	1-month	6-month	12-month
Multiple	31.4% (11/35)	18.4% (9/49)	23.5% (12/51)	14.9% (7/47)
Type I proximal	2.9% (1/35)	8.2% (4/49)	5.9% (3/51)	6.4% (3/47)
Type I distal	0%	0%	0%	0%
Туре II	0%	0%	0%	0%
Туре III	0%	0%	0%	0%
Type IV	0%	0%	0%	0%
Type unknown	0%	2.0% (1/49)	2.0% (1/51)	2.1% (1/47)
Collateral	57.1% (20/35)	42.9% (21/49)	41.2% (21/51)	38.3% (18/47)
Secondary tear	34.3% (12/35)	28.6% (14/49)	29.4% (15/51)	17.0% (8/47)
Total patients	62.9% (22/35)	59.2% (29/49)	51.0% (26/51)	46.8% (22/47)

Tables 38, 39, and 40 detail the sources of entry-flow in the abdominal false lumen in patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. The majority of patients had abdominal false lumen flow through secondary tears and/or collateral vessels, the coverage/occlusion of which were at physician discretion. The single patient with Type I proximal entry-flow in the abdominal aorta is one of the same patients who was noted to have thoracic false lumen perfusion through proximal Type I entry-flow in the setting of apparent graft undersizing as well as an inadequate proximal landing zone (diameter and length) based on core laboratory measurements relative to the location of graft placement.

Table 38 - Entry-Flow in the Abdominal Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Source	Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month	
Multiple	28.6% (2/7)	20.0% (2/10)	22.2% (2/9)	33.3% (2/6)	
Type I proximal	0%	0%	0%	0%	
Type I distal	0%	0%	0%	0%	
Type II	0%	0%	0%	0%	
Type III	0%	0%	0%	0%	
Type IV	0%	0%	0%	0%	
Type unknown	0%	0%	0%	0%	
Collateral	42.9% (3/7)	40.0% (4/10)	44.4% (4/9)	33.3% (2/6)	
Secondary tear	28.6% (2/7)	20.0% (2/10)	33.3% (3/9)	50.0% (3/6)	
Total patients	42.9% (3/7)	40.0% (4/10)	55.6% (5/9)	50.0% (3/6)	

Table 39 – Entry-Flow in the Abdominal Aorta for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Source	Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month	
Multiple	82.1% (23/28)	70.3% (26/37)	63.2% (24/38)	66.7% (26/39)	
Type I proximal	0%	2.7% (1/37) ^a	0%	0%	
Type I distal	0%	0%	0%	0%	
Type II	0%	0%	0%	0%	
Type III	0%	0%	0%	0%	
Type IV	0%	0%	0%	0%	
Type unknown	0%	0%	2.6% (1/38)	0% (0/39)	
Collateral	92.9% (26/28)	81.1% (30/37)	84.2% (32/38)	76.9% (30/39)	
Secondary tear	89.3% (25/28)	75.7% (28/37)	71.1% (27/38)	74.4% (29/39)	
Total patients	100% (28/28)	89.2% (33/37)	92.1% (35/38)	84.6% (33/39)	

^a Patient 1130006 underwent a surgical repair 153 days post-procedure in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient underwent a surgical repair involving the ascending aorta and arch 153 days post-procedure.

Table 40 - Entry-Flow in the Abdominal Aorta for All Patients Based on Results from Core Laboratory Analysis

.		Percent Patients (nu	umber/total number)		
Source	Post-procedure	1-month	6-month	12-month	
Multiple	71.4% (25/35)	59.6% (28/47)	55.3% (26/47)	62.2% (28/45)	
Type I proximal	0%	2.1% (1/47)	0%	0%	
Type I distal	0%	0%	0%	0%	
Type II	0%	0%	0%	0%	
Type III	0%	0%	0%	0%	
Type IV	0%	0%	0%	0%	
Type unknown	0%	0%	2.1% (1/47)	0%	
Collateral	82.9% (29/35)	72.3% (34/47)	76.6% (36/47)	71.1% (32/45)	
Secondary tear	77.1% (27/35)	63.8% (30/47)	63.8% (30/47)	71.1% (32/45)	
Total patients	88.6% (31/35)	78.7% (37/47)	85.1% (40/47)	80.0% (36/45)	

False Lumen Status

Tables 41, 42, and 43 present data for false lumen status within the stent graft region for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. There were no patients with a patent false lumen in the region of the stent graft at

12 months, and 78.3% had complete thrombosis (including those no longer with an apparent false lumen), which appeared greater in the patients with a Dissection Stent (86.5%) compared to the patients without a Dissection Stent (44.4%).

Table 41 – Status of False Lumen Within the Stent Graft for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Status		Percent Patients (nu	ber/total number)			
	Post-procedure	1-month	6-month	12-month		
Patent	0%	8.3% (1/12) ^a	0%	0%		
Partially thrombosed	57.1% (4/7)	41.7% (5/12)	50.0% (5/10)	55.6% (5/9)		
Completely thrombosed	42.9% (3/7)	50.0% (6/12)	40.0% (4/10)	33.3% (3/9)		
No apparent false lumen	0% (0/7)	0% (0/12)	10.0% (1/10)	11.1% (1/9)		

^a Patient 1230010: false lumen flow through a secondary tear in the descending thoracic aorta as well as collateral vessels reported at this time point; the false lumen in the stent graft region was partially thrombosed at 6 and 12 months.

Table 42 – Status of False Lumen Within the Stent Graft for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Status		Percent Patients (nu	Percent Patients (number/total number)			
	Post-procedure	1-month	6-month	12-month		
Patent	0%	0%	0%	0%		
Partially thrombosed	46.4% (13/28)	41.7% (15/36)	29.3% (12/41)	13.5% (5/37)		
Completely thrombosed	53.6% (15/28)	52.8% (19/36)	61.0% (25/41)	78.4% (29/37)		
No apparent false lumen	0% (0/28)	5.6% (2/36)	9.8% (4/41)	8.1% (3/37)		

Table 43 – Status of False Lumen Within the Stent Graft for All Patients Based on Results from Core Laboratory Analysis

Status		Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month		
Patent	0%	2.1% (1/48)	0%	0%		
Partially thrombosed	48.6% (17/35)	41.7% (20/48)	33.3% (17/51)	21.7% (10/46)		
Completely thrombosed	51.4% (18/35)	52.1% (25/48)	56.9% (29/51)	69.6% (32/46)		
No apparent false lumen	0% (0/35)	4.2% (2/48)	9.8% (5/51)	8.7% (4/46)		

Table 44 presents data for false lumen status within the Dissection Stent region over time based on core laboratory analysis. The rate of false lumen patency decreased over time whereby the majority of patients (97.5%) had either partial thrombosis, complete thrombosis, or no apparent false lumen any longer within the Dissection Stent region at 12 months. The one patient (2.6%) with a patent false lumen at 12 months (also with false lumen perfusion from secondary tears and patent collaterals) had a partially thrombosed false lumen in this region at subsequent follow-up.

Table 44 - Status of False Lumen Within the Dissection Stent Based on Results from Core Laboratory Analysis

Status		Percent Patients (number/total number)			
	Post-procedure	1-month	6-month	12-month	
Patent	10.7% (3/28) ^{a,b,c}	11.1% (4/36) ^{c,d,e,f}	2.4% (1/41) ^g	2.6% (1/39) ^h	
Partially thrombosed	85.7% (24/28)	83.3% (30/36)	80.5% (33/41)	79.5% (31/39)	
Completely thrombosed	3.6% (1/28)	5.6% (2/36)	14.6% (6/41)	15.4% (6/39)	
No apparent false lumen	0%	0%	2.4% (1/41) ⁱ	2.6% (1/39) ⁱ	

Patient 1130074: the false lumen in the Dissection Stent region was not assessed at 1 month and was partially thrombosed at 6 and 12 months.

^b Patient 1130067: the patient died 96 days post-procedure (CEC unable to adjudicate), prior to completing any additional follow

^c Patient 1130082: the patient was lost-to-follow-up following the 1-month imaging.

^d Patient 1130038: the false lumen in the Dissection Stent region was partially thrombosed at 6 and 12 months.

e Patient 1130084: the false lumen in the Dissection Stent region was partially thrombosed at post-procedure and 6 months; the patient died 330 days post-procedure (CEC unable to adjudicate), prior to completing the 12-month follow-up visit.

Patient 1130057: the false lumen in the Dissection Stent region was partially thrombosed at 6 and 12 months

9 Patient 1130058: the false lumen in the Dissection Stent region was partially thrombosed at post procedure, 1 month, and 12 months.

h Patient 1130069: the false lumen in the Dissection Stent region was partially thrombosed at post-procedure, 1 month, and 2 years. The false lumen in this region was not assessed at 6 months.

Tables 45, 46, and 47 present data for false lumen status distal to the treated segment for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. Distal to the treated segment, false lumen patency was noted in 17% of patients at 12 months (7 with a Dissection Stent, 1 without a Dissection Stent). While the rate of false lumen patency distal to the treated segment initially appeared higher (at post-procedure) in the patients with a Dissection Stent, the rates were

more comparable between groups by 12 months; a trend towards a higher percentage of patients with a patent false lumen distal to the treated segment is not unexpected for the group with a Dissection Stent as these patients tended to more often present with secondary tears, particularly in locations distal to the stent graft (i.e., in the region of the branch vessels and abdominal aorta) as compared to patients who did not receive a Dissection Stent.

Table 45 – Status of False Lumen Distal to the Treated Segment for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month	
Patent	16.7% (1/6)ª	16.7% (2/12) ^{b,c}	10.0% (1/10) ^a	11.1% (1/9)ª	
Partially thrombosed	33.3% (2/6)	25.0% (3/12)	40.0% (4/10)	22.2% (2/9)	
Completely thrombosed	33.3% (2/6)	33.3% (4/12)	10.0% (1/10)	22.2% (2/9)	
No apparent false lumen	16.7% (1/6)	25.0% (3/12)	40.0% (4/10)	44.4% (4/9)	

^a Patient 1130081

^b Patient 1130079

^c Patient 1230010: partially thrombosed at subsequent time points

Table 46 - Status of False Lumen Distal to the Treated Segment for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)			
	Post-procedure	1-month	6-month	12-month
Patent	57.1% (16/28) ^{a-p}	22.7% (9/35) ^{i-l,o-s}	25.6% (10/39) e,f,i,l,o,p,r,t,u,v	18.4% (7/38) ^{b,i,p,r,s,t,w}
Partially thrombosed	21.4% (6/28)	37.1% (13/35)	48.7% (19/39)	50.0% (19/38)
Completely thrombosed	3.6% (1/28)	0% (0/35)	5.1% (2/39)	5.3% (2/38)
No apparent false lumen	17.9% (5/28)	37.1% (13/35)	20.5% (8/39)	26.3% (10/38)
Patient 1130047: partially thrombosed at subsequent time points	m	Patient 1130060		

^b Patient 1130085

Patient 1130088: partially thrombosed at subsequent time points.

d Patient 1130066

e Patient 1130074: n/a at 1-month, partially thrombosed at subsequent time points f Patient 1130087.

9 Patient 1130067

h Patient 1130043: partially thrombosed at subsequent time points Patient 1130044

Patient 1130064: partially thrombosed at subsequent time points. k Patient 1130082

Patient 1130084

Patient 1130052: n/a at 1-month, partially thrombosed at subsequent time points.

 Patient 1130053: partially thrombosed at subsequent time points. P Patient 1130058: partially thrombosed at subsequent time points.

9 Patient 1130034: n/a at 6-month, partially thrombosed at 12-month

r Patient 1130038.

^s Patient 1130013.

t Patient 1130024

u Patient 1130039.

v Patient 1130035: partially thrombosed at subsequent time points.

w Patient 1130068

Table 47 – Status of False Lumen Distal to the Treated Segment for All Patients Based on Results from Core Laboratory Analysis

61.4.V.		Percent Patients (number/total number)			
Status	Post-procedure	1-month	6-month	12-month	
Patent	50.0% (17/34)	23.4% (11/47)	22.4% (11/49)	17.0% (8/47)	
Partially thrombosed	23.3% (8/34)	34.0% (16/47)	46.9% (23/49)	44.7% (21/47)	
Completely thrombosed	8.8% (3/34)	8.5% (4/47)	6.1% (3/49)	8.5% (4/47)	
No apparent false lumen	17.6% (6/34)	34.0% (16/47)	24.5% (12/49)	29.8% (14/47)	

Progression of Dissection

Tables 48, 49, and 50 report the results from qualitative assessment by the core laboratory for progression of dissection during follow-up for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. The counts in this section are based on imaging assessment by the core laboratory (refer also to the discussion of site-reported events as provided in the following sections:"Not Brotocol Defined MAEs" and "Adverse Effects that Occurred in the PMA Clinical Study"). Two patients with progression of dissection proximally and two patients with progression of dissection distally were reported by the core laboratory within 12 months. Each report occurred in a patient with a Dissection Stent, though in none of the patients did the progression appear associated with placement of the Dissection Stent (or Dissection Endovascular Graft) given the details described in the footnotes below.

Table 48 - Progression of Dissection in Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Progression		Percent Patients (number/total number)				
	Post-procedure	e 1-month	6-month	12-month		
Yes	0%	0%	0%	0%		
No	100% (3/3)	100% (10/10)	100% (10/10)	100% (8/8)		

Table 49 – Progression of Dissection in Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Progression		Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month		
Yes	6.7% (1/15)ª	6.1% (2/33) ^{b,c}	2.9% (1/35) ^d	0%		
No	93.3% (14/15)	93.9% (31/33)	97.1% (34/35)	100% (35/35)		

^a Patient 1130060 had progression of dissection proximally, extending to Zone 0 (also with a new tear in this zone) as compared to Zone 2 at pre-procedure. The ascending aortic diameter (36.3 mm) appeared notably larger than the aortic arch diameter (28.8 mm) at pre-procedure, such that the potential for underlying disease in the ascending aortic segment cannot be ruled out as a potential contributing factor to progression of dissection proximally.

^b Patient 1130088 had progression of dissection distally, extending to Zone 10 as compared to Zone 9 at pre-procedure, whereas the Dissection Stent had only extended to Zone 5. Abdominal false lumen perfusion through a secondary tear as well as collateral vessels was noted at the same follow-up time point, which cannot be ruled out as a potential contributing factor to progression of dissection distally.

Patient 1130002 had progression of dissection distally, but only within the celiac artery, not the aorta.

^d Patient 1130039 had progression of dissection proximally. The patient had preexisting Type A dissection prior to the index procedure (per CEC adjudication) as well as a patent false lumen proximal and distal to the treated segment at 6 months.

Table 50 – Progression of Dissection in All Patients Based on Results from Core Laboratory Analysis

Progression		Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month		
Yes No	5.6% (1/18) 94.4% (17/18)	4.7% (2/43) 95.3% (41/43)	2.2% (1/45) 97.8% (44/45)	0% 100% (43/43)		

Branch Vessel Patency

Table 51 reports the patency status of the branch vessels (left subclavian, spinal, celiac, superior mesenteric, renal, and common iliac arteries), as assessed by the core laboratory at each time point for all patients. The only aortic branch vessel occlusions noted by the core laboratory during follow-up involved the left subclavian artery: there were no spinal, celiac, SMA, or renal artery occlusions, and the few patients with common iliac artery occlusions at follow-up also had occlusion noted at pre-procedure.

Table 51 – Patency of Branch Vessels in All Patients Based on Results from Core Laboratory Analysis

Automa Status		Percent Patients (number/total number)			
Artery Status	Pre-procedure	Post-procedure	1-month	6-month	12-month
LSA Patent Occluded Revascularization Unknown	100% (71/71) 0% 0% 0%	65.7% (23/35) 2.9% (1/35) 31.4% (11/35) 0%	69.4% (34/49) 6.1% (3/49) 24.5% (12/49) 0%	76.5% (39/51) 7.8% (4/51) 15.7% (8/51) 0%	75.0% (36/48) 4.2% (2/48) 18.8% (9/48) 2.1% (1/48)
Spinal artery Patent Occluded Unknown	100.0% (72/72) 0% 0%	100% (35/35) 0% 0%	100% (49/49) 0% 0%	100% (51/51) 0% 0%	100% (48/48) 0% 0%
Celiac artery Patent Occluded Unknown	98.6% (69/70) 1.4% (1/70) 0%	100% (34/34) 0% 0%	100% (48/48) 0% 0%	100% (51/51) 0% 0%	95.8% (46/48) 0% 4.2% (2/48)
SMA Patent Occluded Unknown	100% (68/68) 0% 0%	100% (35/35) 0% 0%	100% (49/49) 0% 0%	100% (50/50) 0% 0%	97.9% (47/48) 0% 2.1% (1/48)
Left renal artery Patent Occluded Unknown	100% (68/68) 0% 0%	100% (35/35) 0% 0%	100% (48/48) 0% 0%	100% (50/50) 0% 0%	100% (47/47) 0% 0%
Right renal artery Patent Occluded Unknown	98.5% (66/67) 1.5% (1/67) 0%	100% (35/35) 0% 0%	100% (49/49) 0% 0%	100% (50/50) 0% 0%	100% (46/46) 0% 0%
Left CIA Patent Occluded Unknown	100% (62/62) 0% 0%	97.1% (33/34) 0% 2.9% (1/34)	100% (48/48) 0% 0%	98.0% (48/49) 0% 2.0% (1/49)	100% (46/46) 0% 0%
Right CIA Patent Occluded Unknown	93.5% (58/62) 6.5% (4/62) 0%	97.1% (33/34) 0% 2.9% (1/34)	97.9% (47/48) 2.1% (1/48) 0%	96.0% (47/49) 2.0% (1/49) 2.0% (1/49)	95.7% (44/46) 4.3% (2/46) 0%

Device Integrity

Tables 52, 53, and 54 report the occurrence of device integrity findings at each follow-up time point for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively, as determined by the core laboratory. There were no device integrity losses (i.e., stent fractures) within 12 months, only isolated observations of graft kink

in one patient, device compression in two patients (involving the Dissection Endovascular Graft in one and the Dissection Stent in one), and increasing overlap between adjacent z-stent segments of a Dissection Stent in one, none of which were associated with adverse clinical sequelae or the need for reintervention.

Table 52 - Device Integrity Findings in Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Finding	Number of Occurrences				
	Post-procedure	1-month	6-month	12-month	
Kink	0	0	0	0	
Stent fracture	0	0	0	0	
Device compression	0	0	0	0	
Device infolding	0	0	0	0	
Other	0	0	0	0	

Table 53 – Device Integrity Findings in Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Finding		Number of Occurrences			
	Post-procedure	1-month	6-month	12-month	
Kink	0	0	0	1¢	
Stent fracture	0	0	0	0	
Device compression	0	0	2 ^{a,d}	1 ^d	
Device infolding	0	0	0	0	
Other	0	0	1 ^b	0	

^a Patient 1130039 had device compression of the stent graft; patient had pre-existing Type A dissection.

^b Patient 1130017 had increasing overlap of the 5th and 6th rings of the proximal Dissection Stent; no migration or component separation noted.

Patient 1130069 had a kink in the stent graft; descending thoracic aorta with notable angulation/curvature at pre-procedure.

^d Patient 1130058 had device compression of the Dissection Stent; patient had slight true lumen diameter decrease in setting of false lumen perfusion from secondary tears and collateral vessels as well as false lumen diameter increase along treated region.

Table 54 – Device Integrity Findings in All Patients Based on Results from Core Laboratory Analysis

Finding	Number of Occurrences			
	Post-procedure	1-month	6-month	12-month
Kink	0	0	0	1
Stent fracture	0	0	0	0
Device compression	0	0	2	1
Device infolding	0	0	0	0
Other	0	0	1	0

Device Migration

Migration was defined as antegrade or retrograde movement of the proximal or distal component of the endoprosthesis greater than 10 mm relative to anatomical landmarks identified on the first post-operative CT scan, as identified by the core laboratory and confirmed by the CEC. **Tables 55**, **56**, and **57** report device migration results based on core laboratory analysis and CEC confirmation for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. There were 4 reports of CEC-confirmed migration >10 mm within 12 months, each of which occurred in a patient who received a Dissection Stent, though there was no migration of the Dissection Stent, only migration of the Dissection Endovascular Graft. However, in all cases, there appeared an inadequate proximal landing zone length (-20 mm of nondissected aorta) as well as graft undersizing in three based on measurements of the core laboratory relative to the location of graft placement. None of the patients required a secondary intervention to treat migration according to the site. The rates of migration in the current study (6.0% at 6 months, 2.2% at 12 months) appear comparable to the rates observed in the acute patient cohort from the feasibility study involving the previous graft design that had barbs (6.8% at 6 months), 4.8% at 12 months).

Table 55 – Device Migration in Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis and CEC Confirmation

Finding	Percent Patients (number/total number)				
	6-month	12-month			
Migration (>10 mm)	0% (0/9)	0% (0/8)			

Table 56 – Device Migration in Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis and CEC Confirmation

Percent Patients (number/total number)				
6-month	12-month			
7.3% (3/41) ^{a,b,c}	2.6% (1/38) ^d			
	6-month			

* Patient 1130020 had caudal migration of the Dissection Endovascular Graft in the likely setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. No secondary interventions have been performed to treat this migration.

^b Patient 1130074 had caudal migration of the Dissection Endovascular Graft in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. The patient underwent a secondary intervention 131 days post-procedure to treat device separation arithibuted to an expanding false lumen. The patient was treated with coil embolization and stent placement. ^c Patient 1130084 had caudal migration of the Dissection Endovascular Graft in the likely setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory.

No secondary interventions have been performed to treat this migration. The patient died 330 days post-procedure due to atherosclerotic cardiovascular disease. ^d Patient 1130044 had caudal migration of the Dissection Endovascular Graft in the likely

* ration is reported and caudal implication of the prosection endowscular Gardin in the interp setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. No secondary interventions have been performed to treat this migration.

Table 57 – Device Migration in All Patients Based on Results from Core Laboratory Analysis and CEC Confirmation

Finding	Percent Patients (number/total number)			
Finding	6-month	12-month		
Migration (>10 mm)	6.0% (3/50)	2.2% (1/46)		

Component Separation

Tables 58, 59, and 60 present data for the occurrence of component separation findings for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively, as determined by the core laboratory. Component separation occurred in 5.9% at 6 months (2 with a Dissection Stent, 0 without a Dissection Stent) and 2.0% at 12 months (1 with a Dissection stent, 0 without a Dissection Stent).

Two reports involved separation between the Dissection Endovascular Graft and Dissection Stent, while one report involved separation between two Dissection Endovascular Grafts. In each case, there appeared aortic elongation, and there were no new tears or branch vessel occlusions noted in conjunction with the separation.

Table 58 - Component Separation for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Finding	Percent Patients (number/total number)				
rinding	Post-procedure	1-month	6-month	12-month	
Component separation	0% (0/6)	0% (0/8)	0% (0/7)	0% (0/9)	

Table 59 - Component Separation for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

Finding	Percent Patients (number/total number)				
	Post-procedure	1-month	6-month	12-month	
Component separation	0% (0/30)	0% (0/40)	6.8% (3/44) ^{a,b,c}	2.5% (1/40)ª	

^a Patient 1130020 had separation between the Dissection Endovascular Graft and Dissection Stent in the setting of approximately 15 mm of apparent aortic elongation between the left common carotid and celiac (23 mm at 12 months), as compared to 11.9 mm of separation between components at 6 months (18.1 mm at 12 months). ^b Patient 1130074 had separation between the Dissection Endovascular Graft and Dissection Stent in the setting of approximately 23 mm of apparent aortic elongation between the left common carotid and celiac, as compared to 8.9 mm of separation between components.

CPatient 1130084 had separation between two Dissection Endovascular Grafts in the setting of approximately 52 mm of apparent aortic elongation between the left common carotid and cellac, as compared to 295 mm of separation between components.

Table 60 - Component Separation for All Patients Based on Results from Core Laboratory Analysis

Finding	Percent Patients (number/total number)				
Finding	Post-procedure	1-month	6-month	12-month	
Component separation	0% (0/36)	0% (0/48)	5.9% (3/51)	2.0% (1/49)	

Secondary Interventions

The percent of patients who required a secondary intervention within 12 months was 12.3% (9/73). This included 6.7% (1/15) of patients who did not receive a Dissection Stent and 13.8% (8/58) of patients who did receive a Dissection Stent.

Tables 61 and 62 list the patient-level details for each reintervention (days to reintervention, site-reported reasons for reintervention, and type of reintervention) for those without a Dissection Stent, respectively.

Table 61 - Site-Reported Reasons for Secondary Intervention in Patients Who Did Not Receive a Dissection Stent

Patient	Days	Reason for Intervention	Type of
	Post-procedure	(as reported by the site)	Intervention
1130079ª	50	Back pain, obstruction/compromise of branch vessels, Type I proximal and distal entry-flow, and sealing re-entry tear	Three ancillary components placed and ascending aorta to innominate and LCC artery bypass

^a Patient had graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient also presented with preexisting Type A dissection according to CEC adjudication.

Table 62 – Site-Reported Reasons for Secondary Intervention in Patients Who Received a Dissection Stent

Patient	Days Post-procedure	Reason for Intervention (as reported by the site)	Type of Intervention
1130006ª	153	Secondary entry-tear and Type I proximal entry-flow	Ascending aorta and total arch replacement; innominate, LCC artery, and LSA reconstruction
1130038	12	Bleeding from right groin, right femoral pseudoaneurysm	Right groin exploration with bovine patch repair of the right femoral artery
1130044 ^b	65	Secondary entry-tear just distal to the covered stent	Placement of two covered endografts
1130050	17	Pain in left arm with no signals in the left wrist; sensory slightly diminished	Left carotid to subclavian bypass and left brachial artery embolectomy
1130074 ^c	131	Device/component separation attributed to expanding false lumen	Coil embolization and stent placement
1130082 ^d	6	Right retained hemothorax	Right video-assisted thoracoscopic surgery evacuation of hematoma, decortication of right lung, flexible bronchoscopy
1130084	5	Right common iliac artery true lumen compression	Stent placement
1130086	2	Abdominal discomfort and rapid expansion of the abdominal false lumen with probable pseudoaneurysm	Coil embolization
	15	Rapidly expanding AAA, possible pseudoaneurysm	Abdominal aortic and bilateral iliac artery replacement with removal of old EVAR stent graft system

^a Patient had graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory.

^b Patient had graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. ^c Patient had separation between the Dissection Graft and Stent in the setting of approximately 23 mm of apparent aortic elongation between the left common carotid and celiac, as compared to 8.9 mm of separation between components based on the results from core lab analysis.

of a stand or grant and grant undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory.

6.5 Post-Approval Study Summary of the Post-Approval Study Methods Data Source

Length of Follow-up and Follow-up Rate

Long-term follow-up availability rates (2-5 years) are provided in Table 63.

The post-approval study for the Zenith Dissection Endovascular System involved continued follow-up (through 5 years) of patients enrolled in the premarket pivotal clinical study that was described in Section A.

Table 63 – Follow-up Availability (2-5 years)

Percent of Data Available (Site)			Adequa	Adequate Imaging to Assess the Parameter (Core Laboratory)			Events Occurring Before Next Interval							
Follow-up Visit Pollow-up	Clinical Assessment	ь	Size Increase in Stent graft	Size Increase in Dissection Stent ^a	Entry-flow in Thoracic Aorta	Entry-flow in Abdominal Aorta	Migration	Device Integrity	Death	Conversion	LTF/WTHD**	Other End-points ^b	Not Due for Next Visit	
2-year	49	85.7% (42/49)	89.8% (44/49)	83.7% (41/49)	79.5% (31/39)	83.7% (41/49)	75.5% (37/49)	79.6% (39/49)	87.8% (43/49)	1	0	4	0	0
3-year	44	90.9% (40/44)	95.5% (42/44)	90.9% (40/44)	88.6% (31/35)	88.6% (39/44)	84.1% (37/44)	90.9% (40/44)	95.5% (42/44)	1	0	1	0	0
4-year	42	88.1% (37/42)	88.1% (37/42)	85.7% (36/42)	79.4% (27/34)	83.3% (35/42)	83.3% (35/42)	83.3% (35/42)	85.7% (36/42)	2	0	3	1	0
5-year	36	86.1% (31/36)	86.1% (31/36)	80.6% (29/36)	75.0% (21/28)	77.8% (28/36)	80.6% (29/36)	80.6% (29/36)	83.3% (30/36)	1	0	3	0	NA*

*NA: not assessed; **LTF/WTHD: lost-to-follow-up/withdrawn

a Size increase in Dissection Stent assessment only applied to patients who received a Dissection Stent.

^b One patient fell outside of the consented window and therefore data outside of the consented 5 years was not collected.

Summary of Final Safety and Effectiveness Findings from the Post-Approval Study (Long-term Results)

This section provides the long-term results for the following endpoints, as identified in the PMA approval order: dissection-related deaths, aortic ruptures, major adverse events (i.e., paraparesis, paraplegia, new ischemia), aortic enlargements, false lumen characteristics (i.e., diameter change, patency, and source of persistent flow), losses of device integrity, and additional dissection-related interventions, including the reasons for the interventions. No formal hypothesis testing was performed for the longer-term follow-up.

Death, Rupture, Conversion

Tables 64, 65, and 66 report the rates of death (all-cause and dissection-related), rupture, and conversion from 2-5 years in patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. Table 67 lists the site-reported causes for each death and the results of adjudication by the CEC.

Table 64 – Death, Rupture, and Conversion in Patients Who Did Not Receive a Dissection Stent

Event	Percent Patients (number/total number)					
Event	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days		
All-cause mortality	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Dissection-related mortality	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Rupture	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Conversion	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		

Table 65 – Death, Rupture, and Conversion in Patients Who Received a Dissection Stent

Event	Percent Patients (number/total number)					
Event	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days		
All-cause mortality	2.2% (1/45)	2.6% (1/39)	2.9% (1/35)	9.1% (3/33)		
Dissection-related mortality	0% (0/45)	0% (0/39)	0% (0/35)	0% (0/33)		
Rupture	0% (0/45)	0% (0/39)	0% (0/35)	3.0% (1/33)		
Conversion	2.2% (1/45)	0% (0/39)	0% (0/35)	0% (0/33)		

Table 66 – Death, Rupture, and Conversion in All Patients

Event	Percent Patients (number/total number)					
Lveik	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days		
All-cause mortality	1.8% (1/56)	2.0% (1/49)	2.3% (1/44)	7.3% (3/41)		
Dissection-related mortality	0% (0/56)	0% (0/49)	0% (0/44)	0% (0/41)		
Rupture	0% (0/56)	0% (0/49)	0% (0/44)	2.4% (1/41)		
Conversion	1.8% (1/56)	0% (0/49)	0% (0/44)	0% (0/41)		

Table 67 – Patient Deaths

Patient Number	Days after Procedure	Dissection Stent Present (Yes/No)	Cause of Death	CEC Adjudication
1130013	454	Yes	Acute blood loss anemia and acute respiratory tract hemorrhage	Not related: related to respiratory tract hemorrhage
1130034	1291	Yes	Lung cancer	Not related: related to a preexisting condition
1130037	1816	Yes	Heart failure	Unable to be adjudicated
1130042	1589	Yes	Cardiac arrest, coronary heart disease, and congestive heart failure	Not related: related to a preexisting condition
1130050	848	Yes	Coagulopathy	Not related: related to preexisting AAA condition
1130051	1714	Yes	Metastatic cancer	Not related: related to pancreatic cancer

Major Adverse Events

Tables 68, 69, and 70 report the long-term data for the frequencies of patients experiencing MAEs in the group of patients who did not receive a Dissection Stent, the group of patients who received a Dissection Stent, and the total patient population, respectively.

Table 68 – Major Adverse Events in Patients Who Did Not Receive a Dissection Stent

Cabanami	Percent Patients (number/total number)					
Category	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days		
Myocardial infarction (includes Q-wave and non-Q-wave)	0% (0/11)	10.0% (1/10)	0% (0/9)	0% (0/8)		
Renal failure requiring dialysis	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Bowel ischemia	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Stroke	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Paraplegia	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Paraparesis	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		
Prolonged (>72 hours) ventilatory support	0% (0/11)	0% (0/10)	0% (0/9)	0% (0/8)		

Table 69 – Major Adverse Events in Patients Who Received a Dissection Stent

		Percent Patients (number/total number)					
Category	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days			
Myocardial infarction (includes Q-wave and non-Q-wave)	0% (0/45)	2.6% (1/39)	0% (0/35)	0% (0/33)			
Renal failure requiring dialysis	2.2% (1/45)	2.6% (1/39)	0% (0/35)	0% (0/33)			
Bowel ischemia	0% (0/45)	2.6% (1/39)ª	0% (0/35)	0% (0/33)			
Stroke	2.2% (1/45)	0% (0/39)	2.9% (1/35)	0% (0/33)			
Paraplegia	0% (0/45)	0% (0/39)	0% (0/35)	0% (0/33)			
Paraparesis	0% (0/45)	0% (0/39)	0% (0/35)	0% (0/33)			
Prolonged (>72 hours) ventilatory support	2.2% (1/45)	2.6% (1/39)	0% (0/35)	0% (0/33)			

a Patient 1130058 experienced bowel ischemia 238 days post-procedure and 953 days post-procedure. The CEC adjudicated both events as not related, and noted that they were not convinced the patient had bowel ischemia.

Table 70 – Major Adverse Events in All Patients

6 1 1 1	Percent Patients (number/total number)					
Category	366-730 Days	731-1095 Days	1096-1460 Days	1461-1825 Days		
Myocardial infarction (includes Q-wave and non-Q-wave)	0% (0/56)	4.1% (2/49)	0% (0/44)	0% (0/41)		
Renal failure requiring dialysis	1.8% (1/56)	2.0% (1/49)	0% (0/44)	0% (0/41)		
Bowel ischemia	0% (0/56)	2.0% (1/49)	0% (0/44)	0% (0/41)		
Stroke	1.8% (1/56)	0% (0/49)	2.3% (1/44)	0% (0/41)		
Paraplegia	0% (0/56)	0% (0/49)	0% (0/44)	0% (0/41)		
Paraparesis	0% (0/56)	0% (0/49)	0% (0/44)	0% (0/41)		
Prolonged (>72 hours) ventilatory support	1.8% (1/56)	2.0% (1/49)	0% (0/44)	0% (0/41)		

True and False Lumen Diameter Change

Fig. 19 (Dissection Stent and no Dissection Stent patients separately) and 20 (all patients combined) present the mean and standard deviation for the true lumen and false lumen diameters over time at the location of the maximum aortic diameter within the stent graft treated segment, the Dissection Stent treated segment, and distal to the treated segment (i.e., most distal stent graft or Dissection Stent, and within dissected aorta).

Within the stent graft region, the average true lumen diameter increased (>5 mm) while the average false lumen diameter decreased (>5 mm) from postprocedure through 5 year follow-up in the total patient population as well as the groups with and without a Dissection Stent. Within the Dissection Stent region, the average true lumen diameter increased (>5 mm) while the average false lumen diameter remained stable (\leq 5 mm change) from post-procedure through 5-year follow-up. For the total patient population as well as the groups with and without a Dissection Stent, distal to the treated segment, the average true lumen diameter appeared stable from post-procedure through 5-year follow-up (<5 mm change), whereas the average false lumen diameter appeared to increase (>5 mm) through 5-year follow-up.

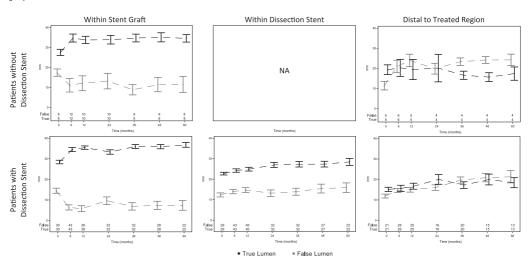


Figure 19. True and false lumen diameters over time at the location of the maximum total aortic diameter within and distal to the specified treated segments for patients who did not receive a Dissection Stent (labeled as Patients without Dissection Stent) and for patients who received a Dissection Stent (labeled as Patients with Dissection Stent). Numbers above the x-axis represent the number of patients at each time point.

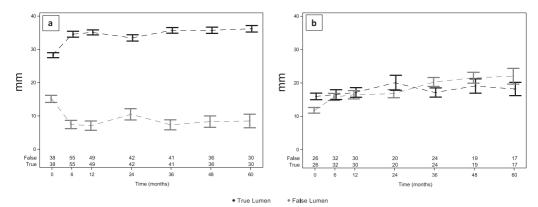


Figure 20. True and false lumen diameters over time at the location of the maximum total aortic diameter within the stent graft (a) and distal to the treated segment (b) in the total patient population. Numbers above the x-axis represent the number of patients at each time point.

Transaortic Diameter Change in Stent Graft Region

The results for change in transaortic diameter within the stent graft region are presented in **Tables 71**, **72**, and **73**, which report the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (<5 mm) in largest size in the transaortic diameter (as compared to first follow-up CT scan) within the stent graft region for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively, at each time point analyzed. While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints (6 and 12 months) are reproduced below in order to demonstrate that the majority of patients with an increase in diameter during longer-term follow-up were the same patients who had an increase in diameter at earlier timepoints.

Table 71 – Change in Transaortic Diameter Within the Stent Graft for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)									
Status	6-month 12-month		2-year 3-year		4-year	5-year				
Increase	25.0% (3/12) ^{a-c}	10.0% (1/10) ^a	20.0% (2/10) ^{a,d}	11.1% (1/9)ª	25.0% (2/8) ^{a,e}	12.5% (1/8) ^a				
Decrease	16.7% (2/12)	20.0% (2/10)	10.0% (1/10)	33.3% (3/9)	25.0% (2/8)	25.0% (2/8)				
No change	58.3% (7/12)	70.0% (7/10)	70.0% (7/10)	55.6% (5/9)	50.0% (4/8)	62.5% (5/8)				

^a Patient 1130081.

^b Patient 1230007.

^c Patient 1230010 ^d Patient 1230006

e Patient 1230000

Table 72 – Change in Transaortic Diameter Within the Stent Graft for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	6-month	12-month	2-year	3-year	4-year	5-year				
Increase Decrease No change	16.3% (7/43) ^{a-g} 20.9% (9/43) 62.8% (27/43)	16.2% (6/37) ^{b-d,f-h} 27.0% (10/37) 56.8% (21/37)	25.0% (8/32) ^{a,b,d-f,h-j} 21.9% (7/32) 53.1% (17/32)	25.8% (8/31) ^{b-d,f,g,i-k} 12.9% (4/31) 61.3% (19/31)	28.6% (8/28) ^{b-f,i-k} 17.9% (5/28) 53.6% (15/28)	19.0% (4/21) ^{c.d.j.} 19.0% (4/21) 61.9% (13/21)				
a Patient 1130017.	^d Patient 1130044.	9 Patient 11300	52. ^j Patient	1130068.						
^o Patient 1130074.	e Patient 1130057.	h Patient 11300	50. ^k Patient	1130023.						
^c Patient 1130006.	^f Patient 1130037.	Patient 113004	2.							

Table 73 – Change in Transaortic Diameter Within the Stent Graft for All Patients Based on Results from Core Laboratory Analysis

Chatrus	Percent Patients (number/total number)										
Status	6-month 12-month	2-year	3-year	4-year	5-year						
Increase	18.2% (10/55)	14.9% (7/47)	23.8% (10/42)	22.5% (9/40)	27.8% (10/36)	17.2% (5/29)					
Decrease	20.0% (11/55)	25.5% (12/47)	19.0% (8/42)	17.5% (7/40)	19.4% (7/36)	20.7% (6/29)					
No change	61.8% (34/55)	59.6% (28/47)	57.1% (24/42)	60.0% (24/40)	52.8% (19/36)	62.1% (18/29)					

Transaortic Diameter Change in Dissection Stent Region

The results for change in transaortic diameter within the Dissection Stent region are presented in **Table 74**, which reports the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (c5 mm) in largest size in the transaortic diameter (as compared to first follow-up CT scan) within the Dissection Stent region at each time point analyzed.

While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints (6 and 12 months) are reproduced below in order to demonstrate that the majority of patients with an increase in diameter during longer-term follow-up were the same patients who had an increase in diameter at earlier timepoints.

Table 74 - Change in Transaortic Diameter Within the Dissection Stent Based on Results from Core Laboratory Analysis

Status	Percent Patients (number/total number)										
Status	6-month	12-month	2-year	3-year	4-year	5-year					
Increase	20.5% (9/44) ^{a-i}	38.5% (15/39) ^{d-r}	45.2% (14/31) b,c,h-n,p,s-v	58.1% (18/31) d-l,n-p,s-u,w-y	59.3% (16/27) b,d-l,n,p,s,x-z	61.9% (13/21) b,d,e,h,j-l,,n,p,s,u,x,aa					
Decrease No change	4.5% (2/44) 75.0% (33/44)	5.1% (2/39) 56.4% (22/39)	6.5% (2/31) 48.4% (15/31)	6.5% (2/31) 35.5% (11/31)	3.7% (1/27) 37.0% (10/27)	4.8% (1/21) 33.3% (7/21)					
^a Patient 1130020.	^f Patient 1130085.	^k Patient 1130043	. ^p Patient	1130023.	^u Patient 1130048.	^z Patient 1130063.					
^b Patient 1130007.	⁹ Patient 1130074.	¹ Patient 1130064.	9 Patient	1130070.	v Patient 1130062.	aa Patient 1130071.					
^c Patient 1130017.	^h Patient 1130086.	m Patient 1130069	9. ^r Patient	1130058.	^w Patient 1130025.						
^d Patient 1130035.	ⁱ Patient 1130037.	ⁿ Patient 1130002	. ^s Patient	1130008.	× Patient 1130068.						
e Patient 1130038.	^j Patient 1130006.	° Patient 1130057	t Patient	1130042	y Patient 1130051.						

Transaortic Diameter Change Distal to Treated Segment

The results for change in transaortic diameter distal to the treated segment and within dissected aorta are presented in **Tables 75**, **76**, and **77**, which report the percentage of patients with a greater than 5 mm increase, a greater than 5 mm decrease, or no change (\leq 5 mm) in largest size in the transaortic diameter (as compared to first follow-up CT scan) distal to the treated segment for patients who did not receive a Dissection Stent, patients who crecived a Dissection Stent, the section Stent, patients who received a Dissection Stent, patients who received a Di

and the total patient population, respectively, at each time point analyzed. While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints (6 and 12 months) are reproduced below in order to demonstrate that the majority of patients with an increase in diameter during longer-term follow-up were the same patients who had an increase in diameter at earlier timepoints.

Table 75 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

Chantana	Percent Patients (number/total number)									
Status	6-month	12-month	2-year	3-year	4-year	5-year				
Increase	16.7% (1/6)ª	60.0% (3/5) ^{a-c}	50.0% (2/4) ^{b,c}	100% (3/3) ^{a-c}	100% (3/3) ^{a,b,c}	100% (3/3) ^{a,b,}				
Decrease	0% (0/6)	0% (0/5)	0% (0/4)	0% (0/3)	0% (0/3)	0% (0/3)				
No change	83.3% (5/6)	40.0% (2/5)	50.0% (2/4)	0% (0/3)	0% (0/3)	0% (0/3)				

^b Patient 1130027

^c Patient 1130081

Table 76 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	6-month	12-month	2-year	3-year	4-year	5-year				
Increase Decrease No change	Decrease 0% (0/23) 0%		6.4% (8/22) ^{a-h} 50.0% (7/14) ^{bg-l} 0% (0/22) 0% (0/14) 53.6% (14/22) 50.0% (7/14)		o 92.3% (12/13) ^{a,b,e-n} 0% (0/13) 7.7% (1/13)	70.0% (7/10) ^{a,e,g,i,j,l,m} 0% (0/10) 30.0% (3/10)				
^a Patient 1130076. ^b Patient 1130037. ^c Patient 1130052	^d Patient 1130058. ^e Patient 1130038. ^f Patient 1130085	⁹ Patient 1130043 ^h Patient 1130089 ¹ Patient 1130006	k Patient	1130023. : 1130063. 1130064	^m Patient 1130044. ⁿ Patient 1130047. ^o Patient 1130074					

Table 77 – Change in Transaortic Diameter Distal to the Treated Segment and Within Dissected Aorta for All Patients Based on Results from Core Laboratory Analysis

C 1.1	Percent Patients (number/total number)									
Status 6-month 12-	12-month	2-year	3-year	4-year	5-year					
Increase	13.8% (4/29)	40.7% (11/27)	50.0% (9/18)	85.0% (17/20)	93.8% (15/16)	76.9% (10/13)				
Decrease	0% (0/29)	0% (0/27)	0% (0/18)	0% (0/20)	0% (0/16)	0% (0/13)				
No change	86.2% (25/29)	59.3% (16/27)	50.0% (9/18)	15.0% (3/20)	6.3% (1/16)	23.1% (3/13)				

False Lumen Status Within Stent Graft Region

Tables 78, 79, and 80 present data for false lumen status within the stent graft region for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. Fig. 21 provides a visual representation of the data. While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints are reproduced below in order to assist in evaluating changes in false lumen patency status over time.

Table 78 – Status of False Lumen Within the Stent Graft for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)								
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year	
Patent	0% (0/7)	8.3% (1/12) ^a	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)	
Partially thrombosed	57.1% (4/7)	41.7% (5/12)	50.0% (5/10)	55.6% (5/9)	55.6% (5/9)	37.5% (3/8)	28.6% (2/7)	42.9% (3/7)	
Completely thrombosed	42.9% (3/7)	50.0% (6/12)	40.0% (4/10)	33.3% (3/9)	33.3% (3/9)	50.0% (4/8)	71.4% (5/7)	57.1% (4/7)	
No apparent false lumen	0% (0/7)	0% (0/12)	10.0% (1/10)	11.1% (1/9)	11.1% (1/9)	12.5% (1/8)	0% (0/7)	0% (0/7)	

^a Patient 1230010 had false lumen flow through a secondary tear in the descending thoracic aorta as well as collateral vessels reported at 1 month; the false lumen in the stent graft region was partially thrombosed at 6 months, 12 months, and 2 years, and was completely thrombosed at 3, 4, and 5 years.

Table 79 – Status of False Lumen Within the Stent Graft for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)								
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year	
Patent	0% (0/28)	0% (0/36)	0% (0/41)	0% (0/37)	0% (0/31)	0% (0/30)	0% (0/27)	0% (0/21)	
Partially thrombosed	46.4% (13/28)	41.7% (15/36)	29.3% (12/41)	13.5% (5/37)	19.4% (6/31)	20.0% (6/30)	11.1% (3/27)	9.5% (2/21)	
Completely thrombosed	53.6% (15/28)	52.8% (19/36)	61.0% (25/41)	78.4% (29/37)	71.0% (22/31)	66.7% (20/30)	77.8% (21/27)	81.0% (17/21)	
No apparent false lumen	0% (0/28)	5.6% (2/36)	9.8% (4/41)	8.1% (3/37)	9.7% (3/31)	13.3% (4/30)	11.1% (3/27)	9.5% (2/21)	

Table 80 – Status of False Lumen Within the Stent Graft for All Patients Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)								
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year	
Patent	0% (0/35)	2.1% (1/48)	0% (0/51)	0% (0/46)	0% (0/40)	0% (0/38)	0% (0/34)	0% (0/28)	
Partially thrombosed	48.6% (17/35)	41.7% (20/48)	33.3% (17/51)	21.7% (10/46)	27.5% (11/40)	23.7% (9/38)	14.7% (5/34)	17.9% (5/28)	
Completely thrombosed	51.4% (18/35)	52.1% (25/48)	56.9% (29/51)	69.6% (32/46)	62.5% (25/40)	63.2% (24/38)	76.5% (26/34)	75.0% (21/28)	
No apparent false lumen	0% (0/35)	4.2% (2/48)	9.8% (5/51)	8.7% (4/46)	10.0% (4/40)	13.2% (5/38)	8.8% (3/34)	7.1% (2/28)	

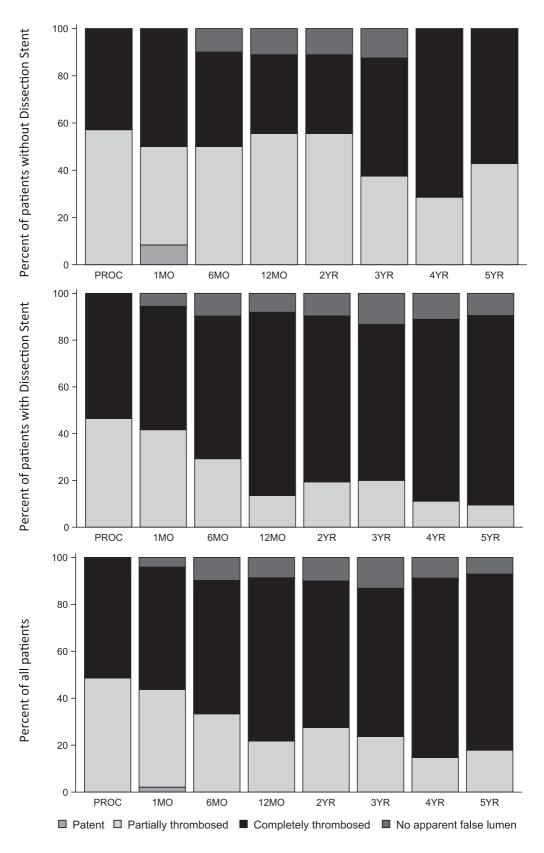


Figure 21. False lumen status within the stent graft region for patients who did not receive a Dissection Stent (labeled as patients without Dissection Stent), patients who received a Dissection Stent (labeled as patients with Dissection Stent), and the total patient population.

False Lumen Status Within The Dissection Stent Region

 Table 81 presents for false lumen status within the Dissection Stent region for the patients who received a Dissection Stent at the time of the index procedure.

 Fig. 22 provides a visual representation of the data.
 While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints are reproduced below in order to assist in evaluating changes in false lumen patency status over time.

Table 81 – Status of False Lumen Within the Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Patent	10.7% (3/28) _{a,b,c}	11.1% (4/36) _{c-f}	2.4% (1/41) g	2.6% (1/39) h	0% (0/30)	0% (0/30)	0% (0/26)	0% (0/21)		
Partially thrombosed Completely thrombosed No apparent false lumen	85.7% (24/28) 3.6% (1/28) 0% (0/28)	83.3% (30/36) 5.6% (2/36) 0% (0/36)	80.5% (33/41) 14.6% (6/41) 2.4% (1/41)	79.5% (31/39) 15.4% (6/39) 2.6% (1/39)	73.3% (22/30) 16.7% (5/30) 10.0% (3/30)	70.0% (21/30) 20.0% (6/30) 10.0% (3/30)	84.6% (22/26) 11.5% (3/26) 3.8% (1/26)	61.9% (13/21) 33.3% (7/21) 4.8% (1/21)		

^a Patient 1130074: the false lumen in the Dissection Stent region was patent on the post-procedure CT scan; was not assessed at 1 month; was partially thrombosed at 6 months, 12 months, 2 years, 3 years, and 4 years; and could not be assessed at 5 years due to inadequate imaging.

b Patient 1130067: the patient died 96 days post-procedure (CEC unable to adjudicate), prior to completing any additional follow-up visits.

Patient 1130082: the patient was lost to follow-up following the 1-month imaging.

^d Patient 1130038: the false lumen in the Dissection Stent region was partially thrombosed at 6 months, 12 months, 3 years, 4 years, and 5 years

e Patient 1130084: the false lumen in the Dissection Stent region was partially thrombosed at post-procedure and 6 months; the patient died 330 days post-procedure

(CEC unable to adjudicate), prior to completing the 12-month follow-up visit.

Patient 1130057: the false lumen in the Dissection Stent region was partially thrombosed at 6 months, 12 months, 2 years, 3 years, and 4 years. The patient's 5 year visit fell outside of the consented window and therefore data were not collected.

⁹ Patient 1130058: the false lumen in the Dissection Stent region was partially thrombosed at post-procedure, 1 month, and 12 months. Because additional devices were implanted, the false lumen was not assessed at 2, 3, and 4 years. The patient withdrew from the study prior to the 5-year follow-up visit.

h Patient 1130069: the false lumen in the Dissection Stent region was partially thrombosed at post-procedure, 1 month, and 2 years. The false lumen in this region was not assessed at 6 months. The patient was lost to follow-up prior to the 4-year follow-up visit.

The patient was lost to follow-up prior to the 4-year follow-up visit.

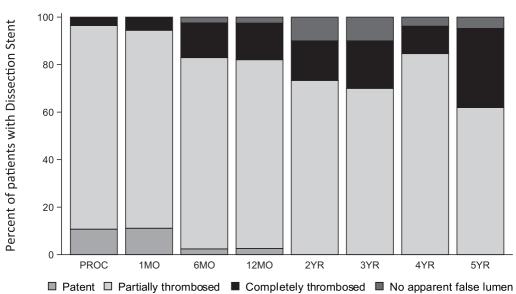


Figure 22. False lumen status within the Dissection Stent.

False Lumen Status Distal to the Treated Region

Tables 82, 83, and 84 present data for false lumen status distal to the treated segment for patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. Fig. 23 provides a visual representation of the data. While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints are reproduced below in order to assist in evaluating changes in false lumen patency status over time.

Table 82 – Status of False Lumen Distal to the Treated Segment for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Patent	16.7% (1/6) ^a	16.7% (2/12) ^{b,c}	10.0% (1/10) ^a	11.1% (1/9) ^a	11.1% (1/9)ª	12.5% (1/8) ^a	14.3% (1/7) ^a	14.3% (1/7) ^a		
Partially thrombosed	33.3% (2/6)	25.0% (3/12)	40.0% (4/10)	22.2% (2/9)	22.2% (2/9)	37.5% (3/8)	42.9% (3/7)	42.9% (3/7)		
Completely thrombosed	33.3% (2/6)	33.3% (4/12)	10.0% (1/10)	22.2% (2/9)	11.1% (1/9)	0% (0/8)	0% (0/7)	0% (0/7)		
No apparent false lumen	16.7% (1/6)	25.0% (3/12)	40.0% (4/10)	44.4% (4/9)	55.6% (5/9)	50.0% (4/8)	42.9% (3/7)	42.9% (3/7)		

^a Patient 1130081. ^b Patient 1130079.

c Patient 1230010: partially thrombosed at subsequent time points.

Table 83 – Status of False Lumen Distal to the Treated Segment for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Patent	57.1% (16/28)	25.7% (9/35)	25.6% (10/39)	18.4% (7/38)	3.7% (1/27)	10.0% (3/30)	11.5% (3/26)	5.3% (1/19)		
	_{a-p}	i-l,o-s	e,f,i,lo,p,r,t,u,v	_{b,i,p,r,s,t,w}	i	_{b,i,r}	_{b,ir}	i		
Partially thrombosed	21.4% (6/28)	37.1% (13/35)	48.7% (19/39)	50.0% (19/38)	63.0% (17/27)	60.0% (18/30)	50.0% (13/26)	52.6% (10/19)		
Completely thrombosed	3.6% (1/28)	0% (0/35)	5.1% (2/39)	5.3% (2/38)	3.7% (1/27)	6.7% (2/30)	11.5% (3/26)	15.8% (3/19)		
No apparent false lumen	17.9% (5/28)	37.1% (13/35)	20.5% (8/39)	26.3% (10/38)	29.6% (8/27)	23.3% (7/30)	26.9% (7/26)	26.3% (5/19)		

a Patient 1130047: partially thrombosed at 6 months, 1 year, 2 years, and 3 years. The patient was not assessed at 4 years or 5 years.

^b Patient 1130085.

c Patient 1130088: partially thrombosed at subsequent time points.

d Patient 1130066

e Patient 1130074: not assessed at 1 month; patent at 6 months; partially thrombosed at 12 months, 2 years, and 3 years; and completely thrombosed at 4 years. The patient was not assessed at 5 years.

f Patient 1130087 9 Patient 1130067

^h Patient 1130043: partially thrombosed at subsequent time points. ⁱ Patient 1130044.

Patient 1130064: partially thrombosed at subsequent time points. ^k Patient 1130082

¹ Patient 1130084

^m Patient 1130060.

ⁿ Patient 1130052: not assessed at 1 month, partially thrombosed at 6 months and 1 year, not assessed at 2 years, partially thrombosed at 3 years, and not assessed at 4 years. The patient withdrew from the study prior to the 5-year follow up visit.

° Patient 1130053: partially thrombosed at subsequent time points.

P Patient 1130058: patent at post-procedure, 1 month, 6 months, and 12 months; and not assessed at 2 years, 3 years, and 4 years. The patient withdrew from the study prior to the 5-year follow-up visit

Patient 1130034: patent at 1 month, not assessed at 6 months, partially thrombosed at 12 months, not assessed at 2 years, and partially thrombosed at 3 years. The patient died 1291 days post-procedure, prior to the 4-year follow up visit. The CEC adjudicated the death as not related, but related to a preexisting condition. Patient 1130038: not assessed at 5 years.

^s Patient 1130013.

t Patient 1130024

^u Patient 1130039.

V Patient 1130035: partially thrombosed at 1 year, not assessed at 2 years, and partially thrombosed at 4 years and 5 years.

^w Patient 1130068: not assessed at post-procedure, 1 month, and 6 months; patent at 12 months; not assessed at 2 years and 3 years; partially thrombosed at 4 years; and not assessed at 5 years.

Table 84 - Status of False Lumen Distal to the Treated Segment for All Patients Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Status	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Patent	50.0% (17/34)	23.4% (11/47)	22.4% (11/49)	17.0% (8/47)	5.6% (2/36)	10.5% (4/38)	12.1% (4/33)	7.7% (2/26)		
Partially thrombosed	23.5% (8/34)	34.0% (16/47)	46.9% (23/49)	44.7% (21/47)	52.8% (19/36)	55.3% (21/38)	48.5% (16/33)	50.0% (13/26)		
Completely thrombosed No apparent false lumen	8.8% (3/34) 17.6% (6/34)	8.5% (4/47) 34.0% (16/47)	6.1% (3/49) 24.5% (12/49)	8.5% (4/47) 29.8% (14/47)	5.6% (2/36) 36.1% (13/36)	5.3% (2/38) 28.9% (11/38)	9.1% (3/33) 30.3% (10/33)	11.5% (3/26) 30.8% (8/26)		

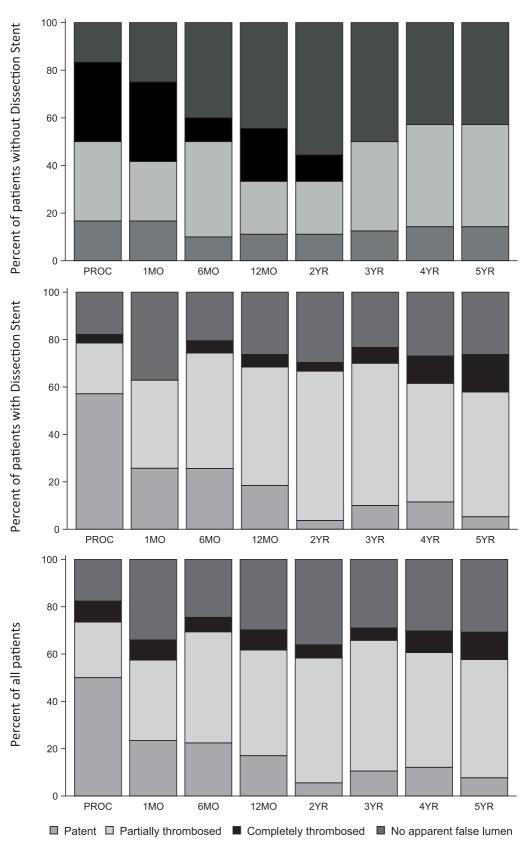


Figure 23. False lumen status distal to the treated segment for patients who did not receive a Dissection Stent (labeled as patients without Dissection Stent), patients who received a Dissection Stent (labeled as patients with Dissection Stent), and the total patient population.

Source of False Lumen Flow in Thoracic Aorta

Tables 85, 86, and 87 detail sources of false lumen flow in the thoracic aorta in patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. While the focus of the post-approval study was longer-term follow-up (2-5 years), results from earlier timepoints are reproduced below in order to demonstrate that the majority of patients with Type I endoleak during longer-term follow-up were the same patients who had Type I endoleak at earlier timepoints.

Table 85 – Entry-flow in the Thoracic Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

		Percent Patients (number/total number)									
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year			
Multiple	14.3% (1/7)	25.0% (3/12)	10.0% (1/10)	11.1% (1/9)	22.2% (2/9)	12.5% (1/8)	14.3% (1/7)	14.3% (1/7)			
Type I proximal	0% (0/7)	8.3% (1/12) ^a	10.0% (1/10) ^b	11.1% (1/9) ^b	33.3% (3/9) ^{b-d}	25.0% (2/8) ^{c,d}	14.3% (1/7) ^d	0% (0/7)			
Type I distal	0% (0/7)	0% (0/12)	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)			
Type II	0% (0/7)	0% (0/12)	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)			
Type III	0% (0/7)	0% (0/12)	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)			
Type IV	0% (0/7)	0% (0/12)	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)			
Type unknown	0% (0/7)	0% (0/12)	0% (0/10)	0% (0/9)	0% (0/9)	0% (0/8)	0% (0/7)	0% (0/7)			
Collateral	57.1% (4/7)	41.7% (5/12)	40.0% (4/10)	44.4% (4/9)	44.4% (4/9)	25.0% (2/8)	28.6% (2/7)	28.6% (2/7)			
Secondary tear	14.3% (1/7)	33.3% (4/12)	10.0% (1/10)	11.1% (1/9)	11.1% (1/9)	12.5% (1/8)	14.3% (1/7)	14.3% (1/7)			
Total patients	57.1% (4/7)	50.0% (6/12)	50.0% (5/10)	44.4% (4/9)	66.7% (6/9)	50.0% (4/8)	42.9% (3/7)	28.6% (2/7)			

^a Patient 1130079 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient was treated with ancillary devices and surgical bypass (**Table 61**) to mitigate the entry-flow. The action table according to measure according to CFC advidiated by CFC advidiated by the core of the core distance of the according to the second surgical bypass (**Table 61**) to mitigate the entry-flow.

The patient also presented with preexisting Type A dissection according to CEC adjudication. ^b Patient 113081 had a Type I proximal entry-flow first noted at 54 days post-procedure (unscheduled visit) in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. This entry-flow has persisted through 2 years. No secondary interventions have been performed at this time to treat this entry-flow.

^c Patient 1130040 had a Type I proximal entry-flow first noted at 2 years (also with migration at 3 years) in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. The entry-flow persisted at 3 years and was completely thrombosed at 4 years and 5 years.

Iocation of grait placement according to measurements by the core laboratory, the entry-now persisted at 3 years and was completely thromoosed at 4 years and 5 years. ^a Patient 1230003 had a Type I proximal entry-flow (and migration) first noted at 2 years; the dissection extended to Zone 0 at pre-procedure and thus the patient had an inadequate proximal landing zone. There has been no change since 2-year follow-up.

Table 86 - Entry-flow in the Thoracic Aorta for Patients Who Received a Dissection Stent based on Results from Core Laboratory Analysis

			Per	cent Patients (nu	mber/total num	ber)		
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year
Multiple	35.7% (10/28)	16.2% (6/37)	26.8% (11/41)	15.8% (6/38)	12.5% (4/32)	25.8% (8/31)	10.7% (3/28)	9.5% (2/21)
Type I proximal	3.6% (1/28) ^a	8.1% (3/37) ^{b-d}	4.9% (2/41) ^{a,c}	5.3% (2/38) ^{c,e}	6.3% (2/32) ^{c,e}	0% (0/31)	0% (0/28)	0% (0/21)
Type I distal	0% (0/28)	0% (0/37)	0% (0/41)	0% (038)	0% (0/32)	0% (0/31)	0% (0/28)	0% (0/21)
Type II	0% (0/28)	0% (0/37)	0% (0/41)	0% (0/38)	0% (0/32)	0% (0/31)	0% (0/28)	0% (0/21)
Type III	0% (0/28)	0% (0/37)	0% (0/41)	0% (0/38)	0% (0/32)	0% (0/31)	0% (0/28)	0% (0/21)
Type IV	0% (0/28)	0% (0/37)	0% (0/41)	0% (0/38)	0% (0/32)	0% (0/31)	0% (0/28)	0% (0/21)
Type unknown	0% (0/28)	2.7% (1/37)	2.4% (1/41)	2.6% (1/38)	3.1% (1/32)	3.2% (1/31)	0% (0/28)	0% (0/21)
Collateral	57.1% (16/28)	43.2% (16/37)	41.5% (17/41)	36.8% (14/38)	34.4% (11/32)	38.7% (12/31)	17.9% (5/28)	14.3% (3/21)
Secondary tear	39.3% (11/28)	27.0% (10/37)	34.1% (14/41)	18.4% (7/38)	15.6% (5/32)	29.0% (9/31)	21.4% (6/28)	19.0% (4/21)
Total patients	64.3% (18/28)	62.2% (23/37)	51.2% (21/41)	47.4% (18/38)	43.8% (14/32)	41.9% (13/31)	28.6% (8/28)	23.8% (5/21)

^a Patient 1130087 had a Type I proximal entry-flow noted at post-procedure and at 6 months in the likely setting of an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. The patient died 306 days post-procedure (CEC unable to adjudicate) with no secondary interventions performed to treat this entry-flow.

^b Patient 1130025 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The endoleak was completely resolved at 6 months without the need for reintervention.

^c Patient 1130006 had a Type I proximal entry-flow first noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient was treated with surgical repair involving the ascending aorta and arch (**Table 62**). The Type I proximal entry-flow has persisted through 2 years, but resolved by 3 years.

^d Patient 1130082 had a Type I proximal entry-flow noted at 1 month, in the likely setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. No secondary interventions have been performed to treat this entry-flow and the patient was reported lost to follow-up subsequent to the 1-month visit.

e Patient 1130044 had a Type I proximal entry-flow noted at 12 months, in the likely setting of graft undersizing as well as an inadequate proximal landing zone (length) relative to the location of graft placement according to measurements by the core laboratory. The Type I proximal entry-flow persisted at 2 years but was completely resolved by 3 years.

Table 87 - Entry-flow in the Thoracic Aorta for All Patients Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Multiple	31.4% (11/35)	18.4% (9/49)	23.5% (12/51)	14.9% (7/47)	14.6% (6/41)	23.1% (9/39)	11.4% (4/35)	10.7% (3/28)		
Type I proximal	2.9% (1/35)	8.2% (4/49)	5.9% (3/51)	6.4% (3/47)	12.2% (5/41)	5.1% (2/39)	2.9% (1/35)	0% (0/28)		
Type I distal	0% (0/35)	0% (0/49)	0% (0/51)	0% (0/47)	0% (0/41)	0% (0/39)	0% (0/35)	0% (0/28)		
Type II	0% (0/35)	0% (0/49)	0% (0/51)	0% (0/47)	0% (0/41)	0% (0/39)	0% (0/35)	0% (0/28)		
Type III	0% (0/35)	0% (0/49)	0% (0/51)	0% (0/47)	0% (0/41)	0% (0/39)	0% (0/35)	0% (0/28)		
Type IV	0% (0/35)	0% (0/49)	0% (0/51)	0% (0/47)	0% (0/41)	0% (0/39)	0% (0/35)	0% (0/28)		
Type unknown	0% (0/35)	2.0% (1/49)	2.0% (1/51)	2.1% (1/47)	2.4% (1/41)	2.6% (1/39)	0% (0/35)	0% (0/28)		
Collateral	57.1% (20/35)	42.9% (21/49)	41.2% (21/51)	38.3% (18/47)	36.6% (15/41)	35.9% (14/39)	20.0% (7/35)	17.9% (5/28)		
Secondary tear	34.3% (12/35)	28.6% (14/49)	29.4% (15/51)	17.0% (8/47)	14.6% (6/41)	25.6% (10/39)	20.0% (7/35)	17.9% (5/28)		
Total patients	62.9% (22/35)	59.2% (29/49)	51.0% (26/51)	46.8% (22/47)	48.8% (20/41)	43.6% (17/39)	31.4% (11/35)	25.0% (7/28)		

Source of False Lumen Flow in Abdominal Aorta

Tables 88, 89, and 90 detail sources of entry-flow in the abdominal aorta in the patients who did not receive a Dissection Stent, patients who received a Dissection Stent, and the total patient population, respectively. As with previous sections, results from earlier time points are reproduced below for reference.

Table 88 – Entry-flow in the Abdominal Aorta for Patients Who Did Not Receive a Dissection Stent Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Multiple	28.6% (2/7)	20.0% (2/10)	22.2% (2/9)	33.3% (2/6)	28.6% (2/7)	33.3% (2/6)	42.9% (3/7)	42.9% (3/7)		
Type I proximal	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Type I distal	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Type II	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Type III	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Type IV	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Type unknown	0% (0/7)	0% (0/10)	0% (0/9)	0% (0/6)	0% (0/7)	0% (0/6)	0% (0/7)	0% (0/7)		
Collateral	42.9% (3/7)	40.0% (4/10)	44.4% (4/9)	33.3% (2/6)	28.6% (2/7)	33.3% (2/6)	42.9% (3/7)	42.9% (3/7)		
Secondary tear	28.6% (2/7)	20.0% (2/10)	33.3% (3/9)	50.0% (3/6)	28.6% (2/7)	33.3% (2/6)	42.9% (3/7)	42.9% (3/7)		
Total patients	42.9% (3/7)	40.0% (4/10)	55.6% (5/9)	50.0% (3/6)	28.6% (2/7)	33.3% (2/6)	42.9% (3/7)	42.9% (3/7)		

Table 89 - Entry-flow in the Abdominal Aorta for Patients Who Received a Dissection Stent Based on Results from Core Laboratory Analysis

		Percent Patients (number/total number)									
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year			
Multiple	82.1% (23/28)	70.3% (26/37)	63.2% (24/38)	66.7% (26/39)	60.0% (18/30)	66.7% (21/31)	64.3% (18/28)	59.1% (13/22)			
Type I proximal	0% (0/28)	2.7% (1/37)ª	0% (0/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Type I distal	0% (0/28)	0% (0/37)	0% (0/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Type II	0% (0/28)	0% (0/37)	0% (0/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Type III	0% (0/28)	0% (0/37)	0% (0/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Type IV	0% (0/28)	0% (0/37)	0% (0/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Type unknown	0% (0/28)	0% (0/37)	2.6% (1/38)	0% (0/39)	0% (0/30)	0% (0/31)	0% (0/28)	0% (0/22)			
Collateral	92.9% (26/28)	81.1% (30/37)	84.2% (32/38)	76.9% (30/39)	73.3% (22/30)	77.4% (24/31)	75.0% (21/28)	72.7% (16/22)			
Secondary tear	89.3% (25/28)	75.7% (28/37)	71.1% (27/38)	74.4% (29/39)	63.3% (19/30)	77.4% (24/31)	75.0% (21/28)	63.6% (14/22)			
Total patients	100% (28/28)	89.2% (33/37)	92.1% (35/38)	84.6% (33/39)	76.7% (23/30)	87.1% (27/31)	85.7% (24/28)	77.3% (17/22)			

^a Patient 1130006 had a Type I proximal entry-flow noted at 1 month in the likely setting of graft undersizing as well as an inadequate proximal landing zone (diameter and length) relative to the location of graft placement according to measurements by the core laboratory. The patient underwent a surgical repair involving the ascending aorta and arch 153 days post-procedure (Table 62).

Table 90 – Entry-flow in the Abdominal Aorta for All Patients Based on Results from Core Laboratory Analysis

	Percent Patients (number/total number)									
Source	Post- procedure	1-month	6-month	12-month	2-year	3-year	4-year	5-year		
Multiple	71.4% (25/35)	59.6% (28/47)	55.3% (26/47)	62.2% (28/45)	54.1% (20/37)	62.2% (23/37)	60.0% (21/35)	55.2% (16/29)		
Type I proximal	0% (0/35)	2.1% (1/47)	0% (0/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Type I distal	0% (0/35)	0% (0/47)	0% (0/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Type II	0% (0/35)	0% (0/47)	0% (0/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Type III	0% (0/35)	0% (0/47)	0% (0/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Type IV	0% (0/35)	0% (0/47)	0% (0/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Type unknown	0% (0/35)	0% (0/47)	2.1% (1/47)	0% (0/45)	0% (0/37)	0% (0/37)	0% (0/35)	0% (0/29)		
Collateral	82.9% (29/35)	72.3% (34/47)	76.6% (36/47)	71.1% (32/45)	64.9% (24/37)	70.3% (26/37)	68.6% (24/35)	65.5% (19/29)		
Secondary tear	77.1% (27/35)	63.8% (30/47)	63.8% (30/47)	71.1% (32/45)	56.8% (21/37)	70.3% (26/37)	68.6% (24/35)	58.6% (17/29)		
Total patients	88.6% (31/35)	78.7% (37/47)	85.1% (40/47)	80.0% (36/45)	67.6% (25/37)	78.4% (29/37)	77.1% (27/35)	69.0% (20/29)		

Retrograde/Proximal Extension of Dissection

In total, there have been 7 patients with site-reported proximal dissection events, including 4 described by the sites as retrograde progression of dissection (1130039, 1130060, 1130068, and 1130079) and 3 described as a new tear/Type A dissection (1130001, 1130025, and 1130089); 3 patients died (each within 365 days) and 4 required reintervention (1 within 365 days). None of the proximal dissection events were considered retrograde progression of Type B dissection to Type A dissection, as 6 patients had evidence of preexisting disease proximal to the LSA prior to study enrollment and 1 had a Type B dissection that was no longer apparent prior to developing a new Type A dissection. No additional patients with retrograde/proximal extension were identified based on core laboratory analysis.

Antegrade/Distal Extension of Dissection

In total, there have been 2 patients (1130002 and 1130088) with antegrade/distal extension of dissection (both occurrences happened within 365 days and involved patients treated with a Dissection Stent).

Device Integrity

There were no new device integrity findings (e.g., kink, stent fracture, compression, infolding) detected by the core laboratory between 2 and 5 years post-procedure.

Secondary Interventions

Secondary interventions No secondary interventions were performed between 2 and 5 years post-procedure in patients who did not receive a Dissection Stent. **Table 91** summarizes the site-reported reasons for secondary intervention between 2 and 5 years post-procedure for patients who received a Dissection Stent.

Table 91 - Site-reported Reasons for Secondary Intervention in Patients Who Received a Dissection Stent

Reason	366-730 Days	731-1095 Days	1096-1460 Days	>1460 Days
Aortic rupture	0	0	0	0
Device kink	0	0	0	0
Device migration	0	0	0	0
Device separation	0	0	0	0
Device stenosis	0	0	0	0
Device infection	1 ^b	0	0	0
Occlusion	0	0	0	0
Obstruction/compromise of branch vessels	0	0	1ª	0
Entry-flow				
Type I proxima	al 2°	0	0	0
Type I dista	al 1º	0	0	0
Туре	II 0	0	0	0
Type III (graft overlap join		0	0	0
Type III (hole/tear in graf		0	0	0
Type IV (through graft body		0	0	0
Unknow		0	0	0
Secondary tea		0	0	1 ^h
Collatera	al 1 ^d	0	0	0
Sealing re-entry tear	0	0	0	0
Other	2 ^{c,d}	2 ^{d,e}	2 ^{f,g}	0
Patient 1130074. c Patient 1130023. e	Patient 1130057.	g Patient 1130089.		
Patient 1130090. d Patient 1130058. f F	Patient 1130025.	h Patient 1130068.		

 Table 92
 summarizes the site-reported types of secondary interventions performed between 2 and 5 years post-procedure for patients who received a Dissection Stent.

Table 92 – Types of Secondary Interventions in Patients Who Received a Dissection Stent

	Туре	366-730 Days	731-1095 Days	1096-1460 Days	>1460 Days
Percutaneous					
	Ancillary component placed	3 ^{b,c}	1e	0	0
	Balloon angioplasty	2 ^{b,c}	0	0	0
	Coil embolization	1 ^c	0	0	0
	Stent	2 ^c	0	1ª	0
	Thrombectomy	0	1c	0	0
	Thrombolysis	0	0	0	0
	Other	0	0	1ª	0
Surgical		1d	0	0	0
-	Conversion to open repair	19	0	0	0
	Surgical bypass procedure	0	0	0	0
	Other	2 ^{b,c}	1°	2 ^{f,g}	1 ^h
Other		0	0	0	0

a Patient 1130074.

b Patient 1130023.

c Patient 1130058. Note that this patient had three separate secondary interventions whereby ancillary components and/or stents were placed (see Table 93). d Patient 1130090.

e Patient 1130057.

f Patient 1130025

g Patient 1130089. h Patient 1130068.

Patient-level details for each secondary intervention between 2 and 5 years post-procedure (including timing, reason, and type) in patients who received a Dissection Stent are provided in **Table 93**.

Table 93 – Detailed Information Regarding Secondary Intervention in Patients Who Received a Dissection Stent

Patient	Days Post-procedure	Reason for Intervention (as reported by the site)	Type of Intervention
	390	Type I proximal and distal entry-flow	Ancillary component placed and balloon angioplasty
1130023	608	Type I proximal entry-flow and sinus of Valsalva aneurysm with aortic valve insufficiency secondary to bicuspid aortic valve	Composite aortic root replacement and total arch replacement
1130025	1161	New tear in ascending thoracic aorta and intermittent chest pressure at rest and when walking quickly	Replacement of aortic valve and ascending aorta
1130057	893	New penetrating ulcer and aneurysmal degeneration distal to the stent grafts, but within the Dissection Stent	Ancillary component placed
	530	Worsening chronic abdominal pain and chest pain, abdominal tenderness, as well as a secondary tear at the distal end of the stent graft	Ancillary component placed and balloon angioplasty
	655	Abdominal pain, secondary tears in the distal infrarenal aorta and at the celiac artery, and collateral flow from the lumbar arteries	Ancillary components placed, stents placed, and coil embolization
1130058	711	Bloody stools and abdominal pain, incomplete collapse of the proximal SMA stent that was deployed on September 16, 2015	Stent placed
	920	Worsening abdominal pain with radiation to the back and right thigh, paresthesia and numbness in the right leg when patient tries to walk, and thrombus in the right CFA extending into the profunda and SFA	Embolectomy and thrombectomy of the right femoropopliteal artery
1130068	1528	Acute Type A dissection with involvement of aortic arch and aneurysmal ascending aorta	Open surgical repair of Type A aortic arch dissection
1130074	1190	Lower extremity claudication, obstruction/compromise of branch vessels	Bifurcated AAA graft and iliac extension stent placed
1130089	1290	New separate Type A dissection	Ascending aortic arch replacement
1130090	650	Fatigue, lethargy, failure to thrive; positive blood cultures and imaging indicated an infected stent graft	Graft explanted and patient underwent conversion to open repair

Study Strengths and Weaknesses

This clinical study was well controlled, having been conducted in accordance with ISO 14155, 21 CFR 812, JGCP, ICH GCP, and other applicable requirements as appropriate. Additionally, the study utilized an independent core laboratory to ensure uniform analysis of pre-procedure and follow-up imaging exams. While the data were analyzed and reported separately for patients with a Dissection Stent and patients without a Dissection Stent, the study was not powered to assess for differences in outcomes based on the presence vs. absence of a Dissection Stent. Nearly one-third of patients died during follow-up (often due to preexisting conditions or other reasons unrelated to the device), thus limiting the number of enrolled patients with completed 5-year follow-up.

7 PATIENT SELECTION AND TREATMENT (See Section 4.2, Patient Selection, Treatment and Follow-Up)

7.1 Individualization of Treatment

The Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent.

Cook recommends that the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent component diameters be selected as described in **Tables 94** and **95**. All lengths and diameters of the devices necessary to complete the procedure should be available to the physician, especially when preoperative case planning measurements (treatment diameters/lengths) are not certain. This approach allows for greater intraoperative flexibility to achieve optimal procedural outcomes. When treating a chronic dissection, do not plan to place the Zenith Dissection Endovascular Stent in an aneurysmal segment.

The risks and benefits should be carefully considered for each patient before use of the graft and/or stent. Additional considerations for patient selection include, but are not limited to:

- · Patient's age and life expectancy
- Co-morbidities (e.g., cardiac, pulmonary, or renal insufficiency prior to surgery, morbid obesity)
- · Patient's suitability for open surgical repair
- · Ability to tolerate general, regional, or local anesthesia
- Ilio-femoral access vessel size and morphology (thrombus, calcification and/or tortuosity) should be compatible with vascular access techniques and introduction system with profile of 20 French (7.7 mm OD) to 22 French (8.5 mm OD), as is used for the Zenith Dissection Endovascular Graft, compared to 16 French (6.0 mm OD) for the Zenith Dissection Endovascular Stent.
- For the Zenith Dissection Endovascular Graft with Pro-Form, a non-dissected/aneurysmal aortic segment (fixation site) proximal to the dissection measured at any circumferential part of the aorta using a 3D reconstruction centerline:
 - · with a length of at least 20 mm,
 - with a diameter measured outer-wall-to-outer-wall of no greater than 38 mm and no less than 20 mm, and
- radius of curvature greater than 35 mm and localized angulation less than 45 degrees along the length of aorta intended to be treated by either the graft or stent.
- For the Zenith Dissection Endovascular Stent, a diameter at the intended implant site for the stent (measured outer-wall-to-outer-wall) of no greater than 38 mm (true lumen) and no less than 20 mm (total aortic diameter).
- Cook recommends that the Zenith Dissection Endovascular Stent component lengths described in Table 95 be selected to correspond to the length of dissection to be treated.
- The ends of the Zenith Dissection Endovascular Stent should not terminate in a curvature less than 35 mm and localized angulation greater than 45 degrees.

If the distal end of the stent will be deployed in a funnel-shaped or angulated section of the aorta, or if the distal end of the stent appears conical in shape upon deployment, it is recommended to extend the treated segment distally with an additional stent, or choose a longer stent so it ends in a straight part of the aorta. Similarly, if the distal end of the stent will be deployed at the level of

the diaphragm, or in a segment adjacent to the origin of the Celiac Trunk, Superior Mesenteric Artery and/or Renal Arteries, it is also recommended to extend the treated segment distally with an additional stent or choose a longer stent.

The final treatment decision is at the discretion of the physician and patient.

8 PATIENT COUNSELING INFORMATION

- The physician and patient (and/or family members) should review the risks and benefits when discussing the endovascular device and procedure, including:
- Risks and differences between endovascular repair and open surgical repair
- Potential advantages of traditional open surgical repair
 Potential advantages of endovascular repair
- Potential advantages of medical therapy
- The possibility that subsequent interventional or open surgical repair may be required after initial endovascular repair

In addition to the risks and benefits of an endovascular repair, the physician should assess the patient's commitment to and compliance with postoperative follow-up as necessary to ensure continuing safe and effective results. Listed below are additional topics to discuss with the patient as to expectations after an endovascular repair:

- The long-term performance of endovascular repair with the devices has not yet been established. All patients should be advised that endovascular treatment requires life-long, regular follow-up to asses their health and the performance of their endovascular graft/stent. Patients with specific clinical findings (e.g., persisting flow in false lumen or changes in the structure or position of the endovascular graft) should receive enhanced follow-up. Specific follow-up guidelines are described in Section 12, IMAGING GUIDELINES AND POSTOPERATIVE FOLLOW-UP. Patients should be counseled on the importance of adhering to the follow-up schedule, both during the first year and at yearly intervals thereafter. Patients should be told that regular and consistent follow-up is a critical part of ensuring the ongoing safety and effectiveness of endovascular treatment of dissections. At a minimum, annual imaging and adherence to routine postoperative follow-up requirements is required and should be considered a life-long commitment to the patient's health and well-being.
 - The patient should be told that successful dissection repair does not arrest the disease process. It is still possible to have associated degeneration of vessels.
- Physicians must advise every patient that it is important to seek prompt medical attention if he/she experiences signs of decreased blood flow to organs or rupture. Signs of decreased blood flow to organs, such as due to occlusion of the graft or branch vessels include, but may not be limited to, nausea, vomiting, pain in the back, abdomen, hip(s) or leg(s) during walking or at rest, and discoloration or coolness of the leg(s). Rupture may be asymptomatic, but usually presents as pain, numbness, weakness in the legs, any back or chest pain, persistent cough, dizziness, fainting, rapid heartbeat, or sudden weakness.

The physician should complete the Patient ID Card and give it to the patient so that he/she can carry it with him/her at all times. The patient should refer to the card anytime he/she visits additional health practitioners, particularly for any additional diagnostic procedures (e.g., MRI).

9 HOW SUPPLIED

- The Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent are sterilized by ethylene oxide gas. Each device is preloaded onto an Z-Trak Plus introduction system, and is supplied in peel-open packages.
- The devices are intended for single use only. Do not re-sterilize the device.
- The product is sterile if the package is unopened and undamaged. Inspect
 the device and packaging to verify that no damage has occurred as a result of
 shipping. Do not use this device if damage has occurred or if the sterilization
 barrier has been damaged or broken. If damage has occurred, do not use the
 product and return to Cook.
- Prior to use, verify correct devices (quantity and size) have been supplied for the patient by matching the device to the order prescribed by the physician for that particular patient.

- The Zenith TX2 Dissection Endovascular Graft with Pro-Form is loaded into a
- 20 French (7.7 mm OD) or 22 French (8.5 mm OD) Flexor Introducer Sheath Introducer sheath and tip surfaces are treated with a hydrophilic coating that, when hydrated, enhances trackability. To activate the hydrophilic coating, the surface must be wiped with a sterile gauze pad soaked in saline solution
- The Zenith Dissection Endovascular Stent is loaded into a 16 French (6 mm OD) Flexor introducer sheath
- **NOTE:** Movement applied to the gray positioner as the stent is unsheathed may cause the deployed stent to elongate. · Do not use after the expiration date printed on the label
- Store in a cool, dry place.

10 CLINICAL USE INFORMATION

10.1 Physician Training

CAUTION: Always have a qualified surgery team available during implantation or reintervention procedures in the event that conversion to open surgical repair is necessary.

CAUTION: The device should only be used by physicians and teams train in vascular interventional techniques (endovascular and surgical) and in the use of this device. The recommended skill/knowledge requirements for physicians using the Zenith TX2 Dissection Endovascular Graft with Pro- Form and the Zenith Dissection Endovascular Stent are outlined below

Patient Selection:

- Knowledge of the natural history of thoracic dissections and co-morbidities associated with repair.
- Knowledge of radiographic image interpretation, patient selection, device selection, planning and sizing

A multidisciplinary team that has combined procedural experience with: · Femoral and brachial cutdown, arteriotomy, and repair or conduit technique

- Percutaneous access and closure techniques
- · Nonselective and selective wire guide and catheter techniques
- · Fluoroscopic and angiographic image interpretation
- Embolization
- Angioplasty
- · Endovascular stent placement
- Snare techniques
- Appropriate use of radiographic contrast material
- Techniques to minimize radiation exposure
- Expertise in necessary patient follow-up modalities

10.2 Inspection Prior to Use

Inspect the devices and packaging to verify that no damage has occurred as a result of shipping. Do not use this device if damage has occurred or if the sterilization barrier has been damaged or broken. If damage has occurred, do not use the product and return to Cook.

Prior to use, verify correct devices (quantity and size) have been supplied for the patient by matching the device to the order prescribed by the physician for that particular patient.

Table 94 - Straight Component and Tapered Component Graft Diameter Sizing Guide*

10.3 Materials Required

(Not included with the Zenith TX2 Dissection Endovascular Graft with Pro-Form or the Zenith Dissection Endovascular Stent). For information on the use of these products, refer to the individual product's instructions for use

- · Fluoroscope with digital angiography capabilities (C-arm or fixed unit)
- Contrast media Power injector
- Syringe
- Heparinized saline solution
- Sterile gauze pads
- · .035 inch (0.89 mm) extra stiff wire guide, 260/300 cm; for example: Cook Amplatz Ultra Stiff Wire Guides (AUS)
 - Cook Lunderquist® DC Extra Stiff Wire Guides (LESDC)
- · .035 inch (0.89 mm) standard wire guide; for example Cook .035 inch Wire Guides
 - Cook .035 inch Bentson Wire Guide
 - Cook Nimble[®] Wire Guides
- · Molding Balloons; for example Cook Coda[®] Balloon Catheter
- Introducer sets; for example
- Cook Check-Flo[®] Introducer Sets
- · Sizing catheter; for example:
 - Cook Aurous® Centimeter Sizing Catheters
- Angiographic radiopaque marker catheters; for example: Cook Torcon NB[®] Advantage Angiographic catheters
- Cook Royal Flush[®] Plus Flush Catheters Entry needles; for example:
- Cook Single Wall Entry Needles

10.4 Device Diameter Sizing Guidelines

The Zenith TX2 Dissection Endovascular Graft with Pro-Form The choice of diameter should be determined from the outer-wall-to-outerwall vessel diameter and not the lumen diameter. **Table 94** incorporates appropriate graft oversizing. Strict adherence to the sizing guidelines is strongly recommended. Undersizing has resulted in false lumer expansion, endoleak/entry-flow, and migration. Excessive oversizing could result in fracture, device infolding, thrombosis, or compression. The potential effects of hypovolemia on aortic diameters should also be considered when selecting the levice size

The Zenith Dissection Endovascular Stent is intended for use as a distal component in combination with the Zenith TX2 Dissection Endovascular Graft with Pro-Form. Therefore, the diameter of the Zenith Dissection Endovascular Stent should be selected with consideration to the distal diameter of the Zenith TX2 Dissection Endovascular Graft. The 36 mm diameter stent is intended for use in conjunction with distal graft diameters ranging from 22 to 34 mm. The 46 mm diameter component is intended for use in conjunction with distal graft diameter ranging from 36 to 42 mm. Additional considerations may affect the choice of stent diameter

Intended Aortic Vessel Diameter ^{1,2} (mm)	Graft Diameter ³ (mm)	Overall Length of Straight Component (mm)	Overall Length of 4 mm Tapered Component (mm)	Overall Length of 8 mm Tapered Component (mm)	Introducer Sheath ID (Fr/mm)	Introducer Sheath + Valve Length (cm)
20	22	79/117			20/6.7	96.2
21	24	79/117			20/6.7	96.2
22/23	26	79/136			20/6.7	96.2
24	28	82/142/202			20/6.7	96.2
25	30	82/142/202			20/6.7	96.2
26	30	82/142/202			20/6.7	96.2
27	30	82/142/202			20/6.7	96.2
28	32	82/142/202	162/202	158/196	20/6.7	96.2
29	32	82/142/202	162/202	158/196	20/6.7	96.2
30	34	79/154/204	159/199	156/194	20/6.7	96.2
31	36	79/154/204	159/199	159/199	22/7.3	96.2
32	36	79/154/204	159/199	159/199	22/7.3	96.2
33	38	79/154/204	154/204	159/199	22/7.3	96.2
34	38	79/154/204	154/204	159/199	22/7.3	96.2
35	40	83/164/218	160/210	165/205	22/7.3	96.2
36	40	83/164/218	160/210	165/205	22/7.3	96.2
37	42	83/164/218	160/210	160/210	22/7.3	96.2
38	42	83/164/218	160/210	160/210	22/7.3	96.2

*All dimensions are nominal

¹ Maximum diameter along the fixation site, measured outer-wall-to-outer-wall.

10.5 Device Length Selection Guidelines The Zenith Dissection Endovascular Stent

The length should be determined from the pre-implant examinations, taking into consideration the fact that the stent length varies with vessel diameter, the degree of tortuosity, and tension on the gray positioner, which may cause the stent segments to overlap or the stent to elongate. The Zenith Dissection Endovascular Stent is available in multiple lengths (4, 6 or 9 stent segments) and in two diameters (36 mm and 46 mm). As described above, given the nature of the uncovered stent design, overall stent length will vary in vivo, see **Table 95**.

² Round measured aortic diameter to nearest mm

³ Additional considerations may affect choice of diameter

Table 95 - Zenith Dissection Endovascular Stent Length Selection Guide

Stent Diameter (mm)	Introducer Sheath Size (ID Fr/OD mm)	Stent Length (at nominal diameter) (mm)	Theoretical Maximum Stent Length (at 20/28 mm diameter) (mm)	Introducer Sheath Length (cm)
36	16/6.0	80	96 at 20	100
36	16/6.0	120	156 at 20	100
36	16/6.0	180	245 at 20	100
46	16/6.0	80	95 at 28	100
46	16/6.0	120	152 at 28	100
46	16/6.0	185	237 at 28	100

11 DIRECTIONS FOR USE

The following instructions embody a basic guideline for device placement. Variations in the following procedures may be necessary. These instructions are intended to help guide the physician and do not take the place of physician judgment

General Use Information

Standard techniques for placement of arterial access sheaths, guiding catheters, angiographic catheters and wire guides should be employed during use of the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent which are compatible with .035 inch diameter wire midde wire guides.

Endovascular stent grafting is a surgical procedure, and blood loss from various causes may occur, infrequently requiring intervention (including transfusion) to prevent adverse outcomes. It is important to monitor blood loss from the hemostatic valve throughout the procedure, but is specifically relevant during and after manipulation of the gray positioner. After the gray positioner has been removed, if blood loss is excessive, consider placing an uninflated molding balloon or an introduction system dilator within the valve, restricting flow.

Pre-Implant Determinants

Verify from pre-implant planning that the correct device has been selected. Determinants include:

- Femoral artery selection for introduction of the introduction system(s)
- · Angulation of aorta, and iliac arteries
- · Quality of the proximal and distal fixation sites Diameters of proximal and distal fixation sites and distal iliac arteries
- · Length of proximal fixation site

Patient Preparation

- 1. Refer to institutional protocols relating to anesthesia, anticoagulation, and monitoring of vital signs.
- 2. Position patient on imaging table allowing fluoroscopic visualization from the aortic arch to the femoral bifurcations
- 3. Expose femoral artery using standard surgical technique. 4. Establish adequate proximal and distal vascular control of femoral artery.

11.1 Preparation/Flush of the Zenith TX2 Dissection Endovascular

Graft with Pro-Form and the Zenith Dissection Endovascular Stent

- 1. Remove yellow-hubbed shipping stylet (from the inner cannula) and cannula protector tube (at the handle). Remove Peel-Away sheath from back of valve assembly. (Fig. 7)
- 2. Elevate distal tip of system and flush through the hemostatic valve until fluid emerges from the tip of the introduction sheath. (Fig. 8) Continue to inject a full 60 mL of flushing solution through the device. Discontinue injection and close stopcock on connecting tube.
- NOTE: Graft flushing solution of heparinized saline is often used. Attach syringe with heparinized saline to the hub on the inner cannula. Flush until fluid exits the distal dilator tip. (Fig. 9)
- 4. Soak sterile gauze pads in saline solution and use to wipe the Flexor Introducer Sheath and dilator tip to activate the hydrophilic coating. Hydrate both sheath and dilator tip liberally.

11.1.1 Placement of the Zenith TX2 Dissection Endovascular Graft with Pro-Form

- 1. Puncture the selected artery using standard technique with an 18 gage
- access needle. Upon vessel entry, insert: • Wire guide – standard .035 inch, 260/300 cm, 15 mm J tip or Bentson wire quide
- Appropriate size sheath (e.g., 5 French)
- Pigtail flush catheter (often radiopaque-banded sizing catheters; i.e., Cook Centimeter Sizing CSC-20 catheter)
- Perform angiography at the appropriate level. If using radiopaque markers, adjust position as necessary and repeat angiography.
- NOTE: Confirm that the proximal landing zone is not dissected. 3. Ensure graft system has been flushed and primed with heparinized saline
- (appropriate flush solution), and all air has been removed. Give systemic heparin. Flush all catheters and wet all wire guides with a strong heparin solution. This should be repeated following each exchange.
- Replace the standard wire guide with a stiff .035 inch, 260/300 cm LESDC wire guide and advance through the catheter and up to the aortic arch. 6. Remove pigtail flush catheter and sheath.
- NOTE: At this stage, the second femoral artery can be accessed for angiographic catheter placement. Alternatively, a brachial approach may be considered.
- Introduce the freshly hydrated introduction system over the wire guide and advance until the desired graft position is reached. CAUTION: To avoid twisting the endovascular graft, never rotate the

introduction system during the procedure. Allow the device to conform naturally to the curves and tortuosity of the vessels. NOTE: The dilator tip will soften at body temperature.

- Verify wire guide position in the aortic arch. Ensure correct graft position.
- Ensure that the Captor Hemostatic Valve on the Flexor Introducer Sheath is turned to the open position. (Fig. 10)
- Stabilize the gray positioner (introduction system shaft) and withdraw the sheath until the graft is fully expanded and the valve assembly docks with the control handle. (Fig. 11) 10.

CAUTION: As the sheath is withdrawn, anatomy and graft position may change. Constantly monitor graft position and perform angiography to check position as necessary.

NOTE: If extreme difficulty is encountered when attempting to withdraw the sheath, place the device in a less tortuous position that enables the sheath to be retracted. Very carefully withdraw the sheath until it just begins to retract, and stop instantly. Move back to original position and continue deployment.

Verify graft position and adjust it forward, if necessary. Recheck graft position with angiography.

NOTE: If an angiographic catheter is placed parallel to the stent graft, use this to perform position angiography.

 Loosen the safety lock from the green trigger-wire release mechanism. Withdraw the trigger-wire in a continuous movement until the proximal end of the graft opens. (Fig. 12) Do not rotate the green trigger-wire knob. Withdraw the trigger-wire completely to release the distal attachment to the introducer.

NOTE: Check to make sure that all trigger-wires are removed prior to withdrawal of the introduction system

13. Remove the introduction system, leaving the wire guide in the graft. NOTE: Leave the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Z-Trak Plus introducer sheath in place if intending to use a dissection stent.

11.1.2 Molding Balloon Insertion – Optional

1. Prepare molding balloon as follows and/or per the manufacturer's instructions:

· Flush wire lumen with heparinized saline

- Remove all air from balloon
- 2. In preparation for the insertion of the molding balloon, open the Captor Hemostatic Valve by turning it counter-clockwise.
- Advance the molding balloon over the wire guide and through the hemostatic valve of the main body introduction system to the level of the proximal fixation site. Maintain proper sheath positioning.
- Tighten the Captor Hemostatic Valve around the molding balloon with gentle pressure by turning it clockwise.
- 5. Expand the molding balloon with diluted contrast media (as directed by the manufacturer) in the area of the proximal covered stent, starting proximally and working in the distal direction. CAUTION: Do not inflate balloon in aorta outside of graft. Use caution

ng molding within a dissection. durin CAUTION: Confirm complete deflation of balloon prior to repositioning.

- Open the Captor Hemostatic Valve, remove the molding balloon and replace it with an angiographic catheter to perform completion angiograms.
- Tighten the Captor Hemostatic Valve around the angiographic catheter with
- gentle pressure by turning it clockwise. Remove or replace all stiff wire guides to allow aorta to resume its natural position.

NOTE: If a dissection stent is to be placed leave the sheath and wire guide from the Graft in place, as the introducer for the Zenith Dissection Endovascular Stent is introduced through it coaxially. The ID of the Zenith TX2 Dissection Endovascular Graft with Pro-Form Introducer Sheath will accommodate introduction of the Zenith Dissection Endovascular Stent Introducer Sheath.

11.1.3 Final Angiogram (if not placing a Zenith Dissection Endovascular Stent)

- 1. Position angiographic catheter just above the level of the endovascular graft. Perform angiography to verify correct positioning. Verify patency of arch vessels and celiac artery. 2. Confirm that there are no perigraft flow or kinks, and verify position of
- proximal and distal gold radiopague markers. Remove the sheaths, wires and catheters

NOTE: If perigraft flow or other problems are observed, refer to Section 11.2, Additional Devices

- 3. Repair vessels and close in standard surgical fashion
- 11.1.4 Placement of the Zenith Dissection Endovascular Stent Perform angiography at the appropriate level. If using radiopaque markers, adjust position as necessary and repeat angiography.
- 2. Ensure system has been flushed with heparinized saline (appropriate flush solution), and all air has been removed.
- Give systemic heparin. Flush all catheters and wet all wire guides with a heparin solution. This should be repeated following each exchange.
- 4. Remove pigtail flush catheter and leave the sheath and wire guide in place. 5. Introduce the Zenith Dissection Endovascular Stent introduction system over the wire guide through the Zenith TX2 Dissection Endovascular Graft with Pro-Form sheath and advance until the desired device position is reached. Make sure that the valve assembly of the Zenith Dissection Endovascular Stent sheath docks with the previously placed sheath.
- 6. During coaxial introduction of the Zenith Dissection Endovascular Stent Introducer Sheath inside of the Zenith TX2 Dissection Endovascular Graft with Pro-Form sheath, take care not to inadvertently advance the outer sheath. Dislodgement of the in-situ Graft Component can occur. CAUTION: To avoid twisting the device, never rotate the introduction system during the procedure. Allow the device to conform naturally to the curves and tortuosity of the aorta.

NOTE: The dilator tip will soften at body temperature.

- 7. Verify wire guide position in the aortic arch. Ensure correct stent position. 8. Ensure that the Captor Hemostatic Valve on the introduction sheath is turned to the open position. (Fig. 10)
- 9. Just before withdrawing the sheath to deploy the stent, unlock the black cap on the anti-torque device by rotating it counter-clockwise. The anti-torque device is now released from the gray dilator and attached only to the Captor Hemostatic Valve. (Fig. 13)

10. Stabilize the gray positioner (introduction system shaft) and begin withdrawing the sheath until the stent is fully expanded and the valve assembly docks with the control handle. (Fig. 14) CAUTION: To avoid deploying the stent inside of the Zenith TX2 Dissection Endovascular Graft with Pro-Form sheath withdraw the two

sheaths together.

snearns togenner.

 Loosen the safety lock from the green trigger-wire release mechanism.
 Withdraw the trigger-wire until the proximal end of the device opens. Do not rotate the green trigger-wire knob. (Fig. 15) The distal end is still attached.
 Continue to withdraw the trigger-wire until the distal end opens. Withdraw the trigger-wire completely.

As the distal end of the stent is still attached to the introduction system do not move the gray positioner until both ends of the stent are fully released. NOTE: Check to make sure that the trigger-wire is removed prior to withdrawal of the introduction system.

NOTE: When using the sheath as a conduit through which other devices will be inserted, stabilize the sheath and remove the inner introduction system entirely, leaving sheath and wire guide in position. Remove the anti-torque device from the Captor Hemostatic Valve by twisting and removing it. Close the Captor Hemostatic Valve by turning it clockwise until it stops. Before any secondary procedure, open the Captor Hemostatic Valve by turning it counter-clockwise until it stops.

12. Remove the introduction system, leaving the wire guide in the graft.

11.1.5 Final Angiogram

Position angiographic catheter just above the level of the endovascular graft. Perform angiography to verify correct positioning. Verify patency of vessels inside the stented area

Repair vessels and close in standard surgical fashion.

11.2 Additional Devices

Inaccuracies in device size selection or placement, changes or anomalies in patient anatomy, or procedural complications can require placement of additional endovascular grafts. Regardless of the device placed, the basic procedure(s) will be similar to the maneuvers required and described previously in this document. It is vital to maintain wire guide access.

12 IMAGING GUIDELINES AND POSTOPERATIVE FOLLOW-UP

12.1 General

The long-term performance of endovascular grafts and stents has not yet been established. All patients should be advised that endovascular treatment requires life-long, regular follow-up to assess their health and performance of their endovascular graft and/or stent. Patients with specific clinical findings (e.g., persisting flow in the false lumen from any source or changes in the structure or position of the endovascular graft) should receive additional follow-up.

Patients should be counseled on the importance of adhering to the follow-up schedule, both during the first year and at yearly intervals thereafter. Patients should be told that regular and consistent follow-up is a critical part of ensuring the ongoing safety and effectiveness of endovascular treatment of dissections. Physicians should evaluate patients on an individual basis and prescribe their follow-up relative to the needs and circumstances of each indiv vidual patient The recommended imaging schedule is presented in Table 96. This schedule continues to be the minimum requirement for patient follow-up and should be maintained even in the absence of clinical symptoms (e.g., pain, numbness, weakness). Patients with specific clinical findings (e.g., persisting flow in the false lumen enlarging aneurysms, or changes in the structure or position of the stent graft or stent) should receive follow-up at more frequent intervals. Annual imaging follow-up should include contrast and non-contrast CT examinations. If renal complications or other factors preclude the use of image contrast media, non-contrast CT may be used.

The combination of contrast and non-contrast CT imaging provides information on device migration and integrity, perigraft flow, patency, progressive disease, fixation length, stent-to-vessel apposition and other morphological changes. Table 96 lists the minimum requirements for imaging follow-up for patients with the Zenith TX2 Dissection Endovascular Graft with Pro-Form and the Zenith Dissection Endovascular Stent. Patients requiring enhanced follow-up should have interim evaluations.

Table 96 – Recommended Imaging Schedule for Endograft Patients

	Angiogram	CT (contrast and non-contrast)	
Pre-procedure		X1	
Procedural	Х		
Pre-discharge (within 7 days)		X ^{2,3}	
1 month		X ^{2,3}	
6 month		X ^{2,3}	
12 month (annually thereafter)		X ^{2,3}	

¹ Imaging should be performed within 6 months before the procedure.

² If Type I or III sources for flow into false lumen are observed, prompt intervention and additional follow-up post-intervention recommended, see Section 12.5, Additional Surveillance and Treatment

³ If flow persists within the false lumen resulting in growth of the false lumen, prompt intervention and additional follow-up post-intervention is recommended.

12.2 Contrast and Non-Contrast CT Recommendations

 Film sets should include all sequential images at lowest possible slice thickness (<3 mm). Do NOT perform large slice thickness (>3 mm) and/o omit consecutive CT images/film sets, as it prevents precise anatomical and device comparisons over time.

- Both non-contrast and contrast runs are required, with matching or corresponding table positions
- · Pre-contrast and contrast run slice thickness and interval must match. Do NOT change patient orientation or re-landmark patient between non-contrast and contrast runs.
- Non-contrast and contrast enhanced baseline and follow-up imaging are important for optimal patient surveillance. It is important to follow acceptable imaging protocols during the CT exam. Table 97 lists examples of acceptable imaging protocols

Table 97 – Acceptable Imaging Protocols

	Non-contrast	Contrast
IV contrast	No	Yes
Acceptable machines	Spiral capable of >40 seconds	Spiral capable of >40 seconds
Injection volume	n/a	150 mL
Injection rate	n/a	>2.5 mL/sec
Injection mode	n/a	Power
Bolus timing	n/a	Test bolus: Smart Prep, C.A.R.E. or equivalent
Coverage – start	Neck	Subclavian aorta
Coverage – finish	Diaphragm	Profunda femoris origin
Collimation	<3 mm	<3 mm
Reconstruction	2.5 mm throughout – soft algorithm	2.5 mm throughout – soft algorithm
Axial DFOV	32 cm	32 cm
Post-injection runs	None	None

12.3 Thoracic Device Radiographs

The following views are required if using x-ray to evaluate device integrity:

- Four films: supine-frontal (AP), cross-table lateral, 30 degree RPO, and 30 degree LPO
- Record the table-to-film distance and use the same distance at each subsequent examination
- Ensure entire device is captured on each single image format lengthwise. The middle photocell, thoracic spine technique, or manual technique should

be used for all views to ensure adequate penetration of the mediastinum. If there is any concern about the device integrity (e.g., kinking, stent breaks,

relative component migration), it is recommended to use magnified views. he attending physician should evaluate films for device integrity (entire evice length, including components) using 2-4 x magnification visual ai

12.4 MRI Information

Nonclinical testing has demonstrated that the Zenith TX2 Dissection Endovascular Graft with Pro-Form overlapped with the nitinol Zenith Dissection Endovascular Stent is MR Conditional according to ASTM F2503. A patient with these devices can be safely scanned after placement under the following conditions:

- Static magnetic fields of 1.5 or 3.0 Tesla
- Maximum spatial magnetic gradient of 720 Gauss/cm or less
- Maximum MR system reported, whole-body-averaged specific absorption rate (SAR) <2.0 W/kg (Normal Operating Mode) for 15 minutes of continuous scanning

Under the scan conditions defined above, the Zenith TX2 Diss ection Endovascular Graft with Pro-Form overlapped with the nitinol Zenith Dissection Endovascular Stent is expected to produce a maximum temperature rise of less than 2.0 °C after 15 minutes of continuous scanning.

In nonclinical testing, the image artifact extends approximately 80 mm from the Zenith TX2 Dissection Endovascular Graft with Pro-Form overlapped with the Zenith Dissection Endovascular Stent when imaged with a gradient echo pulse sequence and a 3.0 T MR system. The image artifact completely obscures the device lumen

For US Patients Only

Cook recommends that the patient register the MR conditions disclosed in this IFU with the MedicAlert Foundation. The MedicAlert Foundation can be contacted in the following manners:

Mail:	MedicAlert Foundation International 2323 Colorado Avenue Turlock, CA 95382
Phone:	888-633-4298 (toll free) 209-668-3333 from outside the US
Fax:	209-669-2450
Web:	www.medicalert.org

12.5 Additional Surveillance and Treatment

Additional surveillance and possible treatment is recommended for:

- Migration
- Inadequate seal length
- · Growth or extension of the false lumen
- · Flow in false lumen of the dissection
- Obstruction/compromise of flow to end organs
- Inadequate stent-to-vessel apposition

Consideration for reintervention or conversion to open repair should include the attending physician's assessment of an individual patient's co-morbidities, life expectancy, and the patient's personal choices. Patients should be counseled that subsequent reinterventions, including catheter-based and open surgical conversion, are possible following endograft placement.

13 REFERENCES

These Instructions for Use are based on experience from physicians and (or) their published literature. Refer to your local Cook Technical Representative for information on available literature.

1. Fillinger MF, Greenberg RK, McKinsey JF, Chaikof EL; for the Society for Surgers and Sectory and Mechanisey and Control EL; for the Society for Vascular Surgery Ad Hoc Committee on TEVAR Reporting Standards. Reporting standards for thoracic endovascular aortic repair (TEVAR), J Vasc Surg. 2010;52:1022-33.

William Cook Europe ApS Sandet 6 4632 Bjaeverskov

Sandet 6 4632 Bjaeverskov Denmark Phone: +4556868686